亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

In this article, we consider change point inference for high dimensional linear models. For change point detection, given any subgroup of variables, we propose a new method for testing the homogeneity of corresponding regression coefficients across the observations. Under some regularity conditions, the proposed new testing procedure controls the type I error asymptotically and is powerful against sparse alternatives and enjoys certain optimality. For change point identification, an argmax based change point estimator is proposed which is shown to be consistent for the true change point location. Moreover, combining with the binary segmentation technique, we further extend our new method for detecting and identifying multiple change points. Extensive numerical studies justify the validity of our new method and an application to the Alzheimer's disease data analysis further demonstrate its competitive performance.

相關內容

In this work, we propose a geometric framework for analyzing mechanical manipulation, for instance, by a robotic agent. Under the assumption of conservative forces and quasi-static manipulation, we use energy methods to derive a metric. In the first part of the paper, we review how quasi-static mechanical manipulation tasks can be naturally described via the so-called force-space, i.e. the cotangent bundle of the configuration space, and its Lagrangian submanifolds. Then, via a second order analysis, we derive the control Hessian of total energy. As this is not necessarily positive-definite, from an optimal control perspective, we propose the use of the squared-Hessian, also motivated by insights derived from both mechanics (Gauss' Principle) and biology (Separation Principle). In the second part of the paper, we apply such methods to the problem of an elastically-driven, inverted pendulum. Despite its apparent simplicity, this example is representative of an important class of robotic manipulation problems for which we show how a smooth elastic potential can be derived by regularizing mechanical contact. We then show how graph theory can be used to connect each numerical solution to `nearby' ones, with weights derived from the very metric introduced in the first part of the paper.

The ability of the foundation models heavily relies on large-scale, diverse, and high-quality pretraining data. In order to improve data quality, researchers and practitioners often have to manually curate datasets from difference sources and develop dedicated data cleansing pipeline for each data repository. Lacking a unified data processing framework, this process is repetitive and cumbersome. To mitigate this issue, we propose a data processing framework that integrates a Processing Module which consists of a series of operators at different granularity levels, and an Analyzing Module which supports probing and evaluation of the refined data. The proposed framework is easy to use and highly flexible. In this demo paper, we first introduce how to use this framework with some example use cases and then demonstrate its effectiveness in improving the data quality with an automated evaluation with ChatGPT and an end-to-end evaluation in pretraining the GPT-2 model. The code and demonstration videos are accessible on GitHub.

Large Language Models (LLMs) are reshaping the research landscape in artificial intelligence, particularly as model parameters scale up significantly, unlocking remarkable capabilities across various domains. Nevertheless, the scalability of model parameters faces constraints due to limitations in GPU memory and computational speed. To address these constraints, various weight compression methods have emerged, such as Pruning and Quantization. Given the low-rank nature of weight matrices in language models, the reduction of weights through matrix decomposition undoubtedly holds significant potential and promise. In this paper, drawing upon the intrinsic structure of LLMs, we propose a novel approach termed Data-free Joint Rank-k Approximation for compressing the parameter matrices. Significantly, our method is characterized by without necessitating additional involvement of any corpus, while simultaneously preserving orthogonality in conjunction with pruning and quantization methods. We achieve a model pruning of 80% parameters while retaining 93.43% of the original performance without any calibration data. Additionally, we explore the fundamental properties of the weight matrix of LLMs undergone Rank-k Approximation and conduct comprehensive experiments to elucidate our hypothesis.

Developing robust and interpretable vision systems is a crucial step towards trustworthy artificial intelligence. In this regard, a promising paradigm considers embedding task-required invariant structures, e.g., geometric invariance, in the fundamental image representation. However, such invariant representations typically exhibit limited discriminability, limiting their applications in larger-scale trustworthy vision tasks. For this open problem, we conduct a systematic investigation of hierarchical invariance, exploring this topic from theoretical, practical, and application perspectives. At the theoretical level, we show how to construct over-complete invariants with a Convolutional Neural Networks (CNN)-like hierarchical architecture yet in a fully interpretable manner. The general blueprint, specific definitions, invariant properties, and numerical implementations are provided. At the practical level, we discuss how to customize this theoretical framework into a given task. With the over-completeness, discriminative features w.r.t. the task can be adaptively formed in a Neural Architecture Search (NAS)-like manner. We demonstrate the above arguments with accuracy, invariance, and efficiency results on texture, digit, and parasite classification experiments. Furthermore, at the application level, our representations are explored in real-world forensics tasks on adversarial perturbations and Artificial Intelligence Generated Content (AIGC). Such applications reveal that the proposed strategy not only realizes the theoretically promised invariance, but also exhibits competitive discriminability even in the era of deep learning. For robust and interpretable vision tasks at larger scales, hierarchical invariant representation can be considered as an effective alternative to traditional CNN and invariants.

Collision detection is one of the most time-consuming operations during motion planning. Thus, there is an increasing interest in exploring machine learning techniques to speed up collision detection and sampling-based motion planning. A recent line of research focuses on utilizing neural signed distance functions of either the robot geometry or the swept volume of the robot motion. Building on this, we present a novel neural implicit swept volume model that is the first to continuously represent arbitrary motions parameterized by their start and goal configurations. This allows to quickly compute signed distances for any point in the task space to the robot motion. Further, we present an algorithm combining the speed of the deep learning-based signed distance computations with the strong accuracy guarantees of geometric collision checkers. We validate our approach in simulated and real-world robotic experiments, and demonstrate that it is able to speed up a commercial bin picking application.

We propose a noble, comprehensive and robust agile requirements change management (ARCM) model that addresses the limitations of existing models and is tailored for agile software development in the global software development paradigm. To achieve this goal, we conducted an exhaustive literature review and an empirical study with RCM industry experts. Our study evaluated the effectiveness of the proposed RCM model in a real-world setting and identifies any limitations or areas for improvement. The results of our study provide valuable insights into how the proposed RCM model can be applied in agile global software development environments to improve software development practices and optimize project success rates.

In this paper, we consider a deterministic online linear regression model where we allow the responses to be multivariate. To address this problem, we introduce MultiVAW, a method that extends the well-known Vovk-Azoury-Warmuth algorithm to the multivariate setting, and show that it also enjoys logarithmic regret in time. We apply our results to the online hierarchical forecasting problem and recover an algorithm from this literature as a special case, allowing us to relax the hypotheses usually made for its analysis.

Existing knowledge graph (KG) embedding models have primarily focused on static KGs. However, real-world KGs do not remain static, but rather evolve and grow in tandem with the development of KG applications. Consequently, new facts and previously unseen entities and relations continually emerge, necessitating an embedding model that can quickly learn and transfer new knowledge through growth. Motivated by this, we delve into an expanding field of KG embedding in this paper, i.e., lifelong KG embedding. We consider knowledge transfer and retention of the learning on growing snapshots of a KG without having to learn embeddings from scratch. The proposed model includes a masked KG autoencoder for embedding learning and update, with an embedding transfer strategy to inject the learned knowledge into the new entity and relation embeddings, and an embedding regularization method to avoid catastrophic forgetting. To investigate the impacts of different aspects of KG growth, we construct four datasets to evaluate the performance of lifelong KG embedding. Experimental results show that the proposed model outperforms the state-of-the-art inductive and lifelong embedding baselines.

With the rise of powerful pre-trained vision-language models like CLIP, it becomes essential to investigate ways to adapt these models to downstream datasets. A recently proposed method named Context Optimization (CoOp) introduces the concept of prompt learning -- a recent trend in NLP -- to the vision domain for adapting pre-trained vision-language models. Specifically, CoOp turns context words in a prompt into a set of learnable vectors and, with only a few labeled images for learning, can achieve huge improvements over intensively-tuned manual prompts. In our study we identify a critical problem of CoOp: the learned context is not generalizable to wider unseen classes within the same dataset, suggesting that CoOp overfits base classes observed during training. To address the problem, we propose Conditional Context Optimization (CoCoOp), which extends CoOp by further learning a lightweight neural network to generate for each image an input-conditional token (vector). Compared to CoOp's static prompts, our dynamic prompts adapt to each instance and are thus less sensitive to class shift. Extensive experiments show that CoCoOp generalizes much better than CoOp to unseen classes, even showing promising transferability beyond a single dataset; and yields stronger domain generalization performance as well. Code is available at //github.com/KaiyangZhou/CoOp.

In this paper, we propose the joint learning attention and recurrent neural network (RNN) models for multi-label classification. While approaches based on the use of either model exist (e.g., for the task of image captioning), training such existing network architectures typically require pre-defined label sequences. For multi-label classification, it would be desirable to have a robust inference process, so that the prediction error would not propagate and thus affect the performance. Our proposed model uniquely integrates attention and Long Short Term Memory (LSTM) models, which not only addresses the above problem but also allows one to identify visual objects of interests with varying sizes without the prior knowledge of particular label ordering. More importantly, label co-occurrence information can be jointly exploited by our LSTM model. Finally, by advancing the technique of beam search, prediction of multiple labels can be efficiently achieved by our proposed network model.

北京阿比特科技有限公司