Integrated sensing and communication (ISAC) is increasingly recognized as a pivotal technology for next-generation cellular networks, offering mutual benefits in both sensing and communication capabilities. This advancement necessitates a re-examination of the fundamental limits within networks where these two functions coexist via shared spectrum and infrastructures. However, traditional stochastic geometry-based performance analyses are confined to either communication or sensing networks separately. This paper bridges this gap by introducing a generalized stochastic geometry framework in ISAC networks. Based on this framework, we define and calculate the coverage and ergodic rate of sensing and communication performance under resource constraints. Then, we shed light on the fundamental limits of ISAC networks by presenting theoretical results for the coverage rate of the unified performance, taking into account the coupling effects of dual functions in coexistence networks. Further, we obtain the analytical formulations for evaluating the ergodic sensing rate constrained by the maximum communication rate, and the ergodic communication rate constrained by the maximum sensing rate. Extensive numerical results validate the accuracy of all theoretical derivations, and also indicate that denser networks significantly enhance ISAC coverage. Specifically, increasing the base station density from $1$ $\text{km}^{-2}$ to $10$ $\text{km}^{-2}$ can boost the ISAC coverage rate from $1.4\%$ to $39.8\%$. Further, results also reveal that with the increase of the constrained sensing rate, the ergodic communication rate improves significantly, but the reverse is not obvious.
Coded caching (CC) can substantially enhance network performance by leveraging memory as an additional communication resource. However, the use of CC is challenging in various practical applications due to dynamic user behavior. The existing solutions, based on shared caching, cannot directly handle all scenarios where users freely enter and depart the network at any time as they are constrained by specific conditions on network parameters. This paper proposes a universally applicable shared-caching scheme for dynamic setups without any restriction on network parameters. The closed-form expressions for the achievable degrees of freedom (DoF) are computed for the resulting generalized scheme, and are shown to achieve the existing optimal bounds of the shared-cache model. Furthermore, a successive-interference-cancellation-free extension based on a fast iterative optimized beamformer design is devised to optimize the use of excess spatial dimensions freed by cache-aided interference cancellation. Extensive numerical experiments are carried out to assess the performance of the proposed scheme. In particular, the results demonstrate that while a dynamic setup may achieve a DoF substantially lower than the optimal DoF of shared caching, our proposed scheme significantly improves the performance at the finite signal-to-noise ratio compared to unicasting, which only benefits from the local caching gain.
Finding cohesive subgraphs in a large graph has many important applications, such as community detection and biological network analysis. Clique is often a too strict cohesive structure since communities or biological modules rarely form as cliques for various reasons such as data noise. Therefore, $k$-plex is introduced as a popular clique relaxation, which is a graph where every vertex is adjacent to all but at most $k$ vertices. In this paper, we propose a fast branch-and-bound algorithm as well as its task-based parallel version to enumerate all maximal $k$-plexes with at least $q$ vertices. Our algorithm adopts an effective search space partitioning approach that provides a lower time complexity, a new pivot vertex selection method that reduces candidate vertex size, an effective upper-bounding technique to prune useless branches, and three novel pruning techniques by vertex pairs. Our parallel algorithm uses a timeout mechanism to eliminate straggler tasks, and maximizes cache locality while ensuring load balancing. Extensive experiments show that compared with the state-of-the-art algorithms, our sequential and parallel algorithms enumerate large maximal $k$-plexes with up to $5 \times$ and $18.9 \times$ speedup, respectively. Ablation results also demonstrate that our pruning techniques bring up to $7 \times$ speedup compared with our basic algorithm.
The diversity of knowledge encoded in large language models (LLMs) and their ability to apply this knowledge zero-shot in a range of settings makes them a promising candidate for use in decision-making. However, they are currently limited by their inability to reliably provide outputs which are explainable and contestable. In this paper, we attempt to reconcile these strengths and weaknesses by introducing a method for supplementing LLMs with argumentative reasoning. Concretely, we introduce argumentative LLMs, a method utilising LLMs to construct argumentation frameworks, which then serve as the basis for formal reasoning in decision-making. The interpretable nature of these argumentation frameworks and formal reasoning means that any decision made by the supplemented LLM may be naturally explained to, and contested by, humans. We demonstrate the effectiveness of argumentative LLMs experimentally in the decision-making task of claim verification. We obtain results that are competitive with, and in some cases surpass, comparable state-of-the-art techniques.
Autonomous wheeled-legged robots have the potential to transform logistics systems, improving operational efficiency and adaptability in urban environments. Navigating urban environments, however, poses unique challenges for robots, necessitating innovative solutions for locomotion and navigation. These challenges include the need for adaptive locomotion across varied terrains and the ability to navigate efficiently around complex dynamic obstacles. This work introduces a fully integrated system comprising adaptive locomotion control, mobility-aware local navigation planning, and large-scale path planning within the city. Using model-free reinforcement learning (RL) techniques and privileged learning, we develop a versatile locomotion controller. This controller achieves efficient and robust locomotion over various rough terrains, facilitated by smooth transitions between walking and driving modes. It is tightly integrated with a learned navigation controller through a hierarchical RL framework, enabling effective navigation through challenging terrain and various obstacles at high speed. Our controllers are integrated into a large-scale urban navigation system and validated by autonomous, kilometer-scale navigation missions conducted in Zurich, Switzerland, and Seville, Spain. These missions demonstrate the system's robustness and adaptability, underscoring the importance of integrated control systems in achieving seamless navigation in complex environments. Our findings support the feasibility of wheeled-legged robots and hierarchical RL for autonomous navigation, with implications for last-mile delivery and beyond.
Unmanned Aerial Vehicles (UAVs) have emerged as a transformative technology across diverse sectors, offering adaptable solutions to complex challenges in both military and civilian domains. Their expanding capabilities present a platform for further advancement by integrating cutting-edge computational tools like Artificial Intelligence (AI) and Machine Learning (ML) algorithms. These advancements have significantly impacted various facets of human life, fostering an era of unparalleled efficiency and convenience. Large Language Models (LLMs), a key component of AI, exhibit remarkable learning and adaptation capabilities within deployed environments, demonstrating an evolving form of intelligence with the potential to approach human-level proficiency. This work explores the significant potential of integrating UAVs and LLMs to propel the development of autonomous systems. We comprehensively review LLM architectures, evaluating their suitability for UAV integration. Additionally, we summarize the state-of-the-art LLM-based UAV architectures and identify novel opportunities for LLM embedding within UAV frameworks. Notably, we focus on leveraging LLMs to refine data analysis and decision-making processes, specifically for enhanced spectral sensing and sharing in UAV applications. Furthermore, we investigate how LLM integration expands the scope of existing UAV applications, enabling autonomous data processing, improved decision-making, and faster response times in emergency scenarios like disaster response and network restoration. Finally, we highlight crucial areas for future research that are critical for facilitating the effective integration of LLMs and UAVs.
Out-of-distribution (OOD) detection is essential in autonomous driving, to determine when learning-based components encounter unexpected inputs. Traditional detectors typically use encoder models with fixed settings, thus lacking effective human interaction capabilities. With the rise of large foundation models, multimodal inputs offer the possibility of taking human language as a latent representation, thus enabling language-defined OOD detection. In this paper, we use the cosine similarity of image and text representations encoded by the multimodal model CLIP as a new representation to improve the transparency and controllability of latent encodings used for visual anomaly detection. We compare our approach with existing pre-trained encoders that can only produce latent representations that are meaningless from the user's standpoint. Our experiments on realistic driving data show that the language-based latent representation performs better than the traditional representation of the vision encoder and helps improve the detection performance when combined with standard representations.
Face recognition technology has advanced significantly in recent years due largely to the availability of large and increasingly complex training datasets for use in deep learning models. These datasets, however, typically comprise images scraped from news sites or social media platforms and, therefore, have limited utility in more advanced security, forensics, and military applications. These applications require lower resolution, longer ranges, and elevated viewpoints. To meet these critical needs, we collected and curated the first and second subsets of a large multi-modal biometric dataset designed for use in the research and development (R&D) of biometric recognition technologies under extremely challenging conditions. Thus far, the dataset includes more than 350,000 still images and over 1,300 hours of video footage of approximately 1,000 subjects. To collect this data, we used Nikon DSLR cameras, a variety of commercial surveillance cameras, specialized long-rage R&D cameras, and Group 1 and Group 2 UAV platforms. The goal is to support the development of algorithms capable of accurately recognizing people at ranges up to 1,000 m and from high angles of elevation. These advances will include improvements to the state of the art in face recognition and will support new research in the area of whole-body recognition using methods based on gait and anthropometry. This paper describes methods used to collect and curate the dataset, and the dataset's characteristics at the current stage.
Molecular design and synthesis planning are two critical steps in the process of molecular discovery that we propose to formulate as a single shared task of conditional synthetic pathway generation. We report an amortized approach to generate synthetic pathways as a Markov decision process conditioned on a target molecular embedding. This approach allows us to conduct synthesis planning in a bottom-up manner and design synthesizable molecules by decoding from optimized conditional codes, demonstrating the potential to solve both problems of design and synthesis simultaneously. The approach leverages neural networks to probabilistically model the synthetic trees, one reaction step at a time, according to reactivity rules encoded in a discrete action space of reaction templates. We train these networks on hundreds of thousands of artificial pathways generated from a pool of purchasable compounds and a list of expert-curated templates. We validate our method with (a) the recovery of molecules using conditional generation, (b) the identification of synthesizable structural analogs, and (c) the optimization of molecular structures given oracle functions relevant to drug discovery.
Deep neural models in recent years have been successful in almost every field, including extremely complex problem statements. However, these models are huge in size, with millions (and even billions) of parameters, thus demanding more heavy computation power and failing to be deployed on edge devices. Besides, the performance boost is highly dependent on redundant labeled data. To achieve faster speeds and to handle the problems caused by the lack of data, knowledge distillation (KD) has been proposed to transfer information learned from one model to another. KD is often characterized by the so-called `Student-Teacher' (S-T) learning framework and has been broadly applied in model compression and knowledge transfer. This paper is about KD and S-T learning, which are being actively studied in recent years. First, we aim to provide explanations of what KD is and how/why it works. Then, we provide a comprehensive survey on the recent progress of KD methods together with S-T frameworks typically for vision tasks. In general, we consider some fundamental questions that have been driving this research area and thoroughly generalize the research progress and technical details. Additionally, we systematically analyze the research status of KD in vision applications. Finally, we discuss the potentials and open challenges of existing methods and prospect the future directions of KD and S-T learning.
Dynamic programming (DP) solves a variety of structured combinatorial problems by iteratively breaking them down into smaller subproblems. In spite of their versatility, DP algorithms are usually non-differentiable, which hampers their use as a layer in neural networks trained by backpropagation. To address this issue, we propose to smooth the max operator in the dynamic programming recursion, using a strongly convex regularizer. This allows to relax both the optimal value and solution of the original combinatorial problem, and turns a broad class of DP algorithms into differentiable operators. Theoretically, we provide a new probabilistic perspective on backpropagating through these DP operators, and relate them to inference in graphical models. We derive two particular instantiations of our framework, a smoothed Viterbi algorithm for sequence prediction and a smoothed DTW algorithm for time-series alignment. We showcase these instantiations on two structured prediction tasks and on structured and sparse attention for neural machine translation.