亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

In this paper, we introduce the BeaverTails dataset, aimed at fostering research on safety alignment in large language models (LLMs). This dataset uniquely separates annotations of helpfulness and harmlessness for question-answering pairs, thus offering distinct perspectives on these crucial attributes. In total, we have compiled safety meta-labels for 30,207 question-answer (QA) pairs and gathered 30,144 pairs of expert comparison data for both the helpfulness and harmlessness metrics. We further showcase applications of BeaverTails in content moderation and reinforcement learning with human feedback (RLHF), emphasizing its potential for practical safety measures in LLMs. We believe this dataset provides vital resources for the community, contributing towards the safe development and deployment of LLMs. Our project page is available at the following URL: //sites.google.com/view/pku-beavertails.

相關內容

數據集,又稱為資料集、數據集合或資料集合,是一種由數據所組成的集合。
 Data set(或dataset)是一個數據的集合,通常以表格形式出現。每一列代表一個特定變量。每一行都對應于某一成員的數據集的問題。它列出的價值觀為每一個變量,如身高和體重的一個物體或價值的隨機數。每個數值被稱為數據資料。對應于行數,該數據集的數據可能包括一個或多個成員。

With the large-scale integration and use of neural network models, especially in critical embedded systems, their security assessment to guarantee their reliability is becoming an urgent need. More particularly, models deployed in embedded platforms, such as 32-bit microcontrollers, are physically accessible by adversaries and therefore vulnerable to hardware disturbances. We present the first set of experiments on the use of two fault injection means, electromagnetic and laser injections, applied on neural networks models embedded on a Cortex M4 32-bit microcontroller platform. Contrary to most of state-of-the-art works dedicated to the alteration of the internal parameters or input values, our goal is to simulate and experimentally demonstrate the impact of a specific fault model that is instruction skip. For that purpose, we assessed several modification attacks on the control flow of a neural network inference. We reveal integrity threats by targeting several steps in the inference program of typical convolutional neural network models, which may be exploited by an attacker to alter the predictions of the target models with different adversarial goals.

The recent advances in natural language processing (NLP), have led to a new trend of applying large language models (LLMs) to real-world scenarios. While the latest LLMs are astonishingly fluent when interacting with humans, they suffer from the misinformation problem by unintentionally generating factually false statements. This can lead to harmful consequences, especially when produced within sensitive contexts, such as healthcare. Yet few previous works have focused on evaluating misinformation in the long-form (LF) generation of LLMs, especially for knowledge-intensive topics. Moreover, although LLMs have been shown to perform well in different languages, misinformation evaluation has been mostly conducted in English. To this end, we present a benchmark, CARE-MI, for evaluating LLM misinformation in: 1) a sensitive topic, specifically the maternity and infant care domain; and 2) a language other than English, namely Chinese. Most importantly, we provide an innovative paradigm for building LF generation evaluation benchmarks that can be transferred to other knowledge-intensive domains and low-resourced languages. Our proposed benchmark fills the gap between the extensive usage of LLMs and the lack of datasets for assessing the misinformation generated by these models. It contains 1,612 expert-checked questions, accompanied with human-selected references. Using our benchmark, we conduct extensive experiments and found that current Chinese LLMs are far from perfect in the topic of maternity and infant care. In an effort to minimize the reliance on human resources for performance evaluation, we offer off-the-shelf judgment models for automatically assessing the LF output of LLMs given benchmark questions. Moreover, we compare potential solutions for LF generation evaluation and provide insights for building better automated metrics.

Link prediction task is vital to automatically understanding the structure of large knowledge bases. In this paper, we present our system to solve this task at the Data Science and Advanced Analytics 2023 Competition "Efficient and Effective Link Prediction" (DSAA-2023 Competition) with a corpus containing 948,233 training and 238,265 for public testing. This paper introduces an approach to link prediction in Wikipedia articles by formulating it as a natural language inference (NLI) task. Drawing inspiration from recent advancements in natural language processing and understanding, we cast link prediction as an NLI task, wherein the presence of a link between two articles is treated as a premise, and the task is to determine whether this premise holds based on the information presented in the articles. We implemented our system based on the Sentence Pair Classification for Link Prediction for the Wikipedia Articles task. Our system achieved 0.99996 Macro F1-score and 1.00000 Macro F1-score for the public and private test sets, respectively. Our team UIT-NLP ranked 3rd in performance on the private test set, equal to the scores of the first and second places. Our code is publicly for research purposes.

Driven by expressiveness commonalities of Python and our Python-based embedded logic-based language Natlog, we design high-level interaction patterns between equivalent language constructs and data types on the two sides. By directly connecting generators and backtracking, nested tuples and terms, coroutines and first-class logic engines, reflection and meta-interpretation, we enable logic-based language constructs to access the full power of the Python ecosystem. We show the effectiveness of our design via Natlog apps working as orchestrators for JAX and Pytorch pipelines and as DCG-driven GPT3 and DALL.E prompt generators. Keyphrases: embedding of logic programming in the Python ecosystem, high-level inter-paradigm data exchanges, coroutining with logic engines, logic-based neuro-symbolic computing, logic grammars as prompt-generators for Large Language Models, logic-based neural network configuration and training.

In this paper, we consider sampling an Ornstein-Uhlenbeck (OU) process through a channel for remote estimation. The goal is to minimize the mean square error (MSE) at the estimator under a sampling frequency constraint when the channel delay statistics is unknown. Sampling for MSE minimization is reformulated into an optimal stopping problem. By revisiting the threshold structure of the optimal stopping policy when the delay statistics is known, we propose an online sampling algorithm to learn the optimum threshold using stochastic approximation algorithm and the virtual queue method. We prove that with probability 1, the MSE of the proposed online algorithm converges to the minimum MSE that is achieved when the channel delay statistics is known. The cumulative MSE gap of our proposed algorithm compared with the minimum MSE up to the $(k+1)$-th sample grows with rate at most $\mathcal{O}(\ln k)$. Our proposed online algorithm can satisfy the sampling frequency constraint theoretically. Finally, simulation results are provided to demonstrate the performance of the proposed algorithm.

In this paper, we study LTLf synthesis under environment specifications for arbitrary reachability and safety properties. We consider both kinds of properties for both agent tasks and environment specifications, providing a complete landscape of synthesis algorithms. For each case, we devise a specific algorithm (optimal wrt complexity of the problem) and prove its correctness. The algorithms combine common building blocks in different ways. While some cases are already studied in literature others are studied here for the first time.

In this paper, we propose a bi-modality medical image synthesis approach based on sequential generative adversarial network (GAN) and semi-supervised learning. Our approach consists of two generative modules that synthesize images of the two modalities in a sequential order. A method for measuring the synthesis complexity is proposed to automatically determine the synthesis order in our sequential GAN. Images of the modality with a lower complexity are synthesized first, and the counterparts with a higher complexity are generated later. Our sequential GAN is trained end-to-end in a semi-supervised manner. In supervised training, the joint distribution of bi-modality images are learned from real paired images of the two modalities by explicitly minimizing the reconstruction losses between the real and synthetic images. To avoid overfitting limited training images, in unsupervised training, the marginal distribution of each modality is learned based on unpaired images by minimizing the Wasserstein distance between the distributions of real and fake images. We comprehensively evaluate the proposed model using two synthesis tasks based on three types of evaluate metrics and user studies. Visual and quantitative results demonstrate the superiority of our method to the state-of-the-art methods, and reasonable visual quality and clinical significance. Code is made publicly available at //github.com/hustlinyi/Multimodal-Medical-Image-Synthesis.

With the surging popularity of approximate near-neighbor search (ANNS), driven by advances in neural representation learning, the ability to serve queries accompanied by a set of constraints has become an area of intense interest. While the community has recently proposed several algorithms for constrained ANNS, almost all of these methods focus on integration with graph-based indexes, the predominant class of algorithms achieving state-of-the-art performance in latency-recall tradeoffs. In this work, we take a different approach and focus on developing a constrained ANNS algorithm via space partitioning as opposed to graphs. To that end, we introduce Constrained Approximate Partitioned Search (CAPS), an index for ANNS with filters via space partitions that not only retains the benefits of a partition-based algorithm but also outperforms state-of-the-art graph-based constrained search techniques in recall-latency tradeoffs, with only 10% of the index size.

This paper surveys and organizes research works in a new paradigm in natural language processing, which we dub "prompt-based learning". Unlike traditional supervised learning, which trains a model to take in an input x and predict an output y as P(y|x), prompt-based learning is based on language models that model the probability of text directly. To use these models to perform prediction tasks, the original input x is modified using a template into a textual string prompt x' that has some unfilled slots, and then the language model is used to probabilistically fill the unfilled information to obtain a final string x, from which the final output y can be derived. This framework is powerful and attractive for a number of reasons: it allows the language model to be pre-trained on massive amounts of raw text, and by defining a new prompting function the model is able to perform few-shot or even zero-shot learning, adapting to new scenarios with few or no labeled data. In this paper we introduce the basics of this promising paradigm, describe a unified set of mathematical notations that can cover a wide variety of existing work, and organize existing work along several dimensions, e.g.the choice of pre-trained models, prompts, and tuning strategies. To make the field more accessible to interested beginners, we not only make a systematic review of existing works and a highly structured typology of prompt-based concepts, but also release other resources, e.g., a website //pretrain.nlpedia.ai/ including constantly-updated survey, and paperlist.

Many tasks in natural language processing can be viewed as multi-label classification problems. However, most of the existing models are trained with the standard cross-entropy loss function and use a fixed prediction policy (e.g., a threshold of 0.5) for all the labels, which completely ignores the complexity and dependencies among different labels. In this paper, we propose a meta-learning method to capture these complex label dependencies. More specifically, our method utilizes a meta-learner to jointly learn the training policies and prediction policies for different labels. The training policies are then used to train the classifier with the cross-entropy loss function, and the prediction policies are further implemented for prediction. Experimental results on fine-grained entity typing and text classification demonstrate that our proposed method can obtain more accurate multi-label classification results.

北京阿比特科技有限公司