Real-time 6D object pose estimation is essential for many real-world applications, such as robotic grasping and augmented reality. To achieve an accurate object pose estimation from RGB images in real-time, we propose an effective and lightweight model, namely High-Resolution 6D Pose Estimation Network (HRPose). We adopt the efficient and small HRNetV2-W18 as a feature extractor to reduce computational burdens while generating accurate 6D poses. With only 33\% of the model size and lower computational costs, our HRPose achieves comparable performance compared with state-of-the-art models. Moreover, by transferring knowledge from a large model to our proposed HRPose through output and feature-similarity distillations, the performance of our HRPose is improved in effectiveness and efficiency. Numerical experiments on the widely-used benchmark LINEMOD demonstrate the superiority of our proposed HRPose against state-of-the-art methods.
Image synthesis under multi-modal priors is a useful and challenging task that has received increasing attention in recent years. A major challenge in using generative models to accomplish this task is the lack of paired data containing all modalities (i.e. priors) and corresponding outputs. In recent work, a variational auto-encoder (VAE) model was trained in a weakly supervised manner to address this challenge. Since the generative power of VAEs is usually limited, it is difficult for this method to synthesize images belonging to complex distributions. To this end, we propose a solution based on a denoising diffusion probabilistic models to synthesise images under multi-model priors. Based on the fact that the distribution over each time step in the diffusion model is Gaussian, in this work we show that there exists a closed-form expression to the generate the image corresponds to the given modalities. The proposed solution does not require explicit retraining for all modalities and can leverage the outputs of individual modalities to generate realistic images according to different constraints. We conduct studies on two real-world datasets to demonstrate the effectiveness of our approach
Due to the curse of statistical heterogeneity across clients, adopting a personalized federated learning method has become an essential choice for the successful deployment of federated learning-based services. Among diverse branches of personalization techniques, a model mixture-based personalization method is preferred as each client has their own personalized model as a result of federated learning. It usually requires a local model and a federated model, but this approach is either limited to partial parameter exchange or requires additional local updates, each of which is helpless to novel clients and burdensome to the client's computational capacity. As the existence of a connected subspace containing diverse low-loss solutions between two or more independent deep networks has been discovered, we combined this interesting property with the model mixture-based personalized federated learning method for improved performance of personalization. We proposed SuPerFed, a personalized federated learning method that induces an explicit connection between the optima of the local and the federated model in weight space for boosting each other. Through extensive experiments on several benchmark datasets, we demonstrated that our method achieves consistent gains in both personalization performance and robustness to problematic scenarios possible in realistic services.
Sometimes the meaning conveyed by images goes beyond the list of objects they contain; instead, images may express a powerful message to affect the viewers' minds. Inferring this message requires reasoning about the relationships between the objects, and general common-sense knowledge about the components. In this paper, we use a scene graph, a graph representation of an image, to capture visual components. In addition, we generate a knowledge graph using facts extracted from ConceptNet to reason about objects and attributes. To detect the symbols, we propose a neural network framework named SKG-Sym. The framework first generates the representations of the scene graph of the image and its knowledge graph using Graph Convolution Network. The framework then fuses the representations and uses an MLP to classify them. We extend the network further to use an attention mechanism which learn the importance of the graph representations. We evaluate our methods on a dataset of advertisements, and compare it with baseline symbolism classification methods (ResNet and VGG). Results show that our methods outperform ResNet in terms of F-score and the attention-based mechanism is competitive with VGG while it has much lower model complexity.
Human Pose Estimation (HPE) based on RGB images has experienced a rapid development benefiting from deep learning. However, event-based HPE has not been fully studied, which remains great potential for applications in extreme scenes and efficiency-critical conditions. In this paper, we are the first to estimate 2D human pose directly from 3D event point cloud. We propose a novel representation of events, the rasterized event point cloud, aggregating events on the same position of a small time slice. It maintains the 3D features from multiple statistical cues and significantly reduces memory consumption and computation complexity, proved to be efficient in our work. We then leverage the rasterized event point cloud as input to three different backbones, PointNet, DGCNN, and Point Transformer, with two linear layer decoders to predict the location of human keypoints. We find that based on our method, PointNet achieves promising results with much faster speed, whereas Point Transfomer reaches much higher accuracy, even close to previous event-frame-based methods. A comprehensive set of results demonstrates that our proposed method is consistently effective for these 3D backbone models in event-driven human pose estimation. Our method based on PointNet with 2048 points input achieves 82.46mm in MPJPE3D on the DHP19 dataset, while only has a latency of 12.29ms on an NVIDIA Jetson Xavier NX edge computing platform, which is ideally suitable for real-time detection with event cameras. Code will be made publicly at //github.com/MasterHow/EventPointPose.
We consider the problem of signal estimation in generalized linear models defined via rotationally invariant design matrices. Since these matrices can have an arbitrary spectral distribution, this model is well suited for capturing complex correlation structures which often arise in applications. We propose a novel family of approximate message passing (AMP) algorithms for signal estimation, and rigorously characterize their performance in the high-dimensional limit via a state evolution recursion. Our rotationally invariant AMP has complexity of the same order as the existing AMP derived under the restrictive assumption of a Gaussian design; our algorithm also recovers this existing AMP as a special case. Numerical results showcase a performance close to Vector AMP (which is conjectured to be Bayes-optimal in some settings), but obtained with a much lower complexity, as the proposed algorithm does not require a computationally expensive singular value decomposition.
Score-based generative models (SGMs) have recently emerged as a promising class of generative models. The key idea is to produce high-quality images by recurrently adding Gaussian noises and gradients to a Gaussian sample until converging to the target distribution, a.k.a. the diffusion sampling. To ensure stability of convergence in sampling and generation quality, however, this sequential sampling process has to take a small step size and many sampling iterations (e.g., 2000). Several acceleration methods have been proposed with focus on low-resolution generation. In this work, we consider the acceleration of high-resolution generation with SGMs, a more challenging yet more important problem. We prove theoretically that this slow convergence drawback is primarily due to the ignorance of the target distribution. Further, we introduce a novel Target Distribution Aware Sampling (TDAS) method by leveraging the structural priors in space and frequency domains. Extensive experiments on CIFAR-10, CelebA, LSUN, and FFHQ datasets validate that TDAS can consistently accelerate state-of-the-art SGMs, particularly on more challenging high resolution (1024x1024) image generation tasks by up to 18.4x, whilst largely maintaining the synthesis quality. With fewer sampling iterations, TDAS can still generate good quality images. In contrast, the existing methods degrade drastically or even fails completely
In high-dimensional prediction settings, it remains challenging to reliably estimate the test performance. To address this challenge, a novel performance estimation framework is presented. This framework, called Learn2Evaluate, is based on learning curves by fitting a smooth monotone curve depicting test performance as a function of the sample size. Learn2Evaluate has several advantages compared to commonly applied performance estimation methodologies. Firstly, a learning curve offers a graphical overview of a learner. This overview assists in assessing the potential benefit of adding training samples and it provides a more complete comparison between learners than performance estimates at a fixed subsample size. Secondly, a learning curve facilitates in estimating the performance at the total sample size rather than a subsample size. Thirdly, Learn2Evaluate allows the computation of a theoretically justified and useful lower confidence bound. Furthermore, this bound may be tightened by performing a bias correction. The benefits of Learn2Evaluate are illustrated by a simulation study and applications to omics data.
Rotated object detection in aerial images is still challenging due to arbitrary orientations, large scale and aspect ratio variations, and extreme density of objects. Existing state-of-the-art rotated object detection methods mainly rely on angle-based detectors. However, angle regression can easily suffer from the long-standing boundary problem. To tackle this problem, we propose a purely angle-free framework for rotated object detection, called Point RCNN, which mainly consists of PointRPN and PointReg. In particular, PointRPN generates accurate rotated RoIs (RRoIs) by converting the learned representative points with a coarse-to-fine manner, which is motivated by RepPoints. Based on the learned RRoIs, PointReg performs corner points refinement for more accurate detection. In addition, aerial images are often severely unbalanced in categories, and existing methods almost ignore this issue. In this paper, we also experimentally verify that re-sampling the images of the rare categories will stabilize training and further improve the detection performance. Experiments demonstrate that our Point RCNN achieves the new state-of-the-art detection performance on commonly used aerial datasets, including DOTA-v1.0, DOTA-v1.5, and HRSC2016.
It is a common paradigm in object detection frameworks to treat all samples equally and target at maximizing the performance on average. In this work, we revisit this paradigm through a careful study on how different samples contribute to the overall performance measured in terms of mAP. Our study suggests that the samples in each mini-batch are neither independent nor equally important, and therefore a better classifier on average does not necessarily mean higher mAP. Motivated by this study, we propose the notion of Prime Samples, those that play a key role in driving the detection performance. We further develop a simple yet effective sampling and learning strategy called PrIme Sample Attention (PISA) that directs the focus of the training process towards such samples. Our experiments demonstrate that it is often more effective to focus on prime samples than hard samples when training a detector. Particularly, On the MSCOCO dataset, PISA outperforms the random sampling baseline and hard mining schemes, e.g. OHEM and Focal Loss, consistently by more than 1% on both single-stage and two-stage detectors, with a strong backbone ResNeXt-101.
This work addresses a novel and challenging problem of estimating the full 3D hand shape and pose from a single RGB image. Most current methods in 3D hand analysis from monocular RGB images only focus on estimating the 3D locations of hand keypoints, which cannot fully express the 3D shape of hand. In contrast, we propose a Graph Convolutional Neural Network (Graph CNN) based method to reconstruct a full 3D mesh of hand surface that contains richer information of both 3D hand shape and pose. To train networks with full supervision, we create a large-scale synthetic dataset containing both ground truth 3D meshes and 3D poses. When fine-tuning the networks on real-world datasets without 3D ground truth, we propose a weakly-supervised approach by leveraging the depth map as a weak supervision in training. Through extensive evaluations on our proposed new datasets and two public datasets, we show that our proposed method can produce accurate and reasonable 3D hand mesh, and can achieve superior 3D hand pose estimation accuracy when compared with state-of-the-art methods.