亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

The quality of training datasets for deep neural networks is a key factor contributing to the accuracy of resulting models. This effect is amplified in difficult tasks such as object detection. Dealing with errors in datasets is often limited to accepting that some fraction of examples is incorrect, estimating their confidence and assigning appropriate weights or ignoring uncertain ones during training. In this work, we propose a different approach. We introduce the Confident Learning for Object Detection (CLOD) algorithm for assessing the quality of each label in object detection datasets, identifying missing, spurious, mislabeled and mislocated bounding boxes and suggesting corrections. By focusing on finding incorrect examples in the training datasets, we can eliminate them at the root. Suspicious bounding boxes can be reviewed in order to improve the quality of the dataset, leading to better models without further complicating their already complex architectures. The proposed method is able to point out 99% of artificially disturbed bounding boxes with a false positive rate below 0.3. We see this method as a promising path to correcting popular object detection datasets.

相關內容

目標檢測,也叫目標提取,是一種與計算機視覺和圖像處理有關的計算機技術,用于檢測數字圖像和視頻中特定類別的語義對象(例如人,建筑物或汽車)的實例。深入研究的對象檢測領域包括面部檢測和行人檢測。 對象檢測在計算機視覺的許多領域都有應用,包括圖像檢索和視頻監視。

知識薈萃

精品入門和進階教程、論文和代碼整理等

更多

查看相關VIP內容、論文、資訊等

Existing machine learning models have proven to fail when it comes to their performance for minority groups, mainly due to biases in data. In particular, datasets, especially social data, are often not representative of minorities. In this paper, we consider the problem of representation bias identification on image datasets without explicit attribute values. Using the notion of data coverage for detecting a lack of representation, we develop multiple crowdsourcing approaches. Our core approach, at a high level, is a divide and conquer algorithm that applies a search space pruning strategy to efficiently identify if a dataset misses proper coverage for a given group. We provide a different theoretical analysis of our algorithm, including a tight upper bound on its performance which guarantees its near-optimality. Using this algorithm as the core, we propose multiple heuristics to reduce the coverage detection cost across different cases with multiple intersectional/non-intersectional groups. We demonstrate how the pre-trained predictors are not reliable and hence not sufficient for detecting representation bias in the data. Finally, we adjust our core algorithm to utilize existing models for predicting image group(s) to minimize the coverage identification cost. We conduct extensive experiments, including live experiments on Amazon Mechanical Turk to validate our problem and evaluate our algorithms' performance.

Wearable health devices are ushering in a new age of continuous and noninvasive remote monitoring. One application of this technology is in anxiety detection. Many advancements in anxiety detection have happened in controlled lab settings, but noise prevents these advancements from generalizing to real-world conditions. We seek to progress the field by studying how noise impacts model performance and developing models that are robust to noisy, real-world conditions and, hence, attuned to the commotion of everyday life. In this study we look to investigate why and how previous methods have failed. Using the wearable stress and affect detection (WESAD) dataset, we compare the effect of various intensities of noise on machine learning models classifying levels of physiological arousal in the three-class classification problem: baseline vs. stress vs. amusement. Before introducing noise, our baseline model performance reaches 98.7%, compared to Schmidt 2018's 80.3%. We discuss potential sources of this discrepancy in results through a careful evaluation of feature extraction and model architecture choices. Finally, after the introduction of noise, we provide a thorough analysis of the effect of noise on each model architecture.

Few-shot learning (FSL) methods typically assume clean support sets with accurately labeled samples when training on novel classes. This assumption can often be unrealistic: support sets, no matter how small, can still include mislabeled samples. Robustness to label noise is therefore essential for FSL methods to be practical, but this problem surprisingly remains largely unexplored. To address mislabeled samples in FSL settings, we make several technical contributions. (1) We offer simple, yet effective, feature aggregation methods, improving the prototypes used by ProtoNet, a popular FSL technique. (2) We describe a novel Transformer model for Noisy Few-Shot Learning (TraNFS). TraNFS leverages a transformer's attention mechanism to weigh mislabeled versus correct samples. (3) Finally, we extensively test these methods on noisy versions of MiniImageNet and TieredImageNet. Our results show that TraNFS is on-par with leading FSL methods on clean support sets, yet outperforms them, by far, in the presence of label noise.

Humans have a natural instinct to identify unknown object instances in their environments. The intrinsic curiosity about these unknown instances aids in learning about them, when the corresponding knowledge is eventually available. This motivates us to propose a novel computer vision problem called: `Open World Object Detection', where a model is tasked to: 1) identify objects that have not been introduced to it as `unknown', without explicit supervision to do so, and 2) incrementally learn these identified unknown categories without forgetting previously learned classes, when the corresponding labels are progressively received. We formulate the problem, introduce a strong evaluation protocol and provide a novel solution, which we call ORE: Open World Object Detector, based on contrastive clustering and energy based unknown identification. Our experimental evaluation and ablation studies analyze the efficacy of ORE in achieving Open World objectives. As an interesting by-product, we find that identifying and characterizing unknown instances helps to reduce confusion in an incremental object detection setting, where we achieve state-of-the-art performance, with no extra methodological effort. We hope that our work will attract further research into this newly identified, yet crucial research direction.

The considerable significance of Anomaly Detection (AD) problem has recently drawn the attention of many researchers. Consequently, the number of proposed methods in this research field has been increased steadily. AD strongly correlates with the important computer vision and image processing tasks such as image/video anomaly, irregularity and sudden event detection. More recently, Deep Neural Networks (DNNs) offer a high performance set of solutions, but at the expense of a heavy computational cost. However, there is a noticeable gap between the previously proposed methods and an applicable real-word approach. Regarding the raised concerns about AD as an ongoing challenging problem, notably in images and videos, the time has come to argue over the pitfalls and prospects of methods have attempted to deal with visual AD tasks. Hereupon, in this survey we intend to conduct an in-depth investigation into the images/videos deep learning based AD methods. We also discuss current challenges and future research directions thoroughly.

Conventional methods for object detection typically require a substantial amount of training data and preparing such high-quality training data is very labor-intensive. In this paper, we propose a novel few-shot object detection network that aims at detecting objects of unseen categories with only a few annotated examples. Central to our method are our Attention-RPN, Multi-Relation Detector and Contrastive Training strategy, which exploit the similarity between the few shot support set and query set to detect novel objects while suppressing false detection in the background. To train our network, we contribute a new dataset that contains 1000 categories of various objects with high-quality annotations. To the best of our knowledge, this is one of the first datasets specifically designed for few-shot object detection. Once our few-shot network is trained, it can detect objects of unseen categories without further training or fine-tuning. Our method is general and has a wide range of potential applications. We produce a new state-of-the-art performance on different datasets in the few-shot setting. The dataset link is //github.com/fanq15/Few-Shot-Object-Detection-Dataset.

Deep Learning (DL) is vulnerable to out-of-distribution and adversarial examples resulting in incorrect outputs. To make DL more robust, several posthoc anomaly detection techniques to detect (and discard) these anomalous samples have been proposed in the recent past. This survey tries to provide a structured and comprehensive overview of the research on anomaly detection for DL based applications. We provide a taxonomy for existing techniques based on their underlying assumptions and adopted approaches. We discuss various techniques in each of the categories and provide the relative strengths and weaknesses of the approaches. Our goal in this survey is to provide an easier yet better understanding of the techniques belonging to different categories in which research has been done on this topic. Finally, we highlight the unsolved research challenges while applying anomaly detection techniques in DL systems and present some high-impact future research directions.

Benefit from the quick development of deep learning techniques, salient object detection has achieved remarkable progresses recently. However, there still exists following two major challenges that hinder its application in embedded devices, low resolution output and heavy model weight. To this end, this paper presents an accurate yet compact deep network for efficient salient object detection. More specifically, given a coarse saliency prediction in the deepest layer, we first employ residual learning to learn side-output residual features for saliency refinement, which can be achieved with very limited convolutional parameters while keep accuracy. Secondly, we further propose reverse attention to guide such side-output residual learning in a top-down manner. By erasing the current predicted salient regions from side-output features, the network can eventually explore the missing object parts and details which results in high resolution and accuracy. Experiments on six benchmark datasets demonstrate that the proposed approach compares favorably against state-of-the-art methods, and with advantages in terms of simplicity, efficiency (45 FPS) and model size (81 MB).

It is a common paradigm in object detection frameworks to treat all samples equally and target at maximizing the performance on average. In this work, we revisit this paradigm through a careful study on how different samples contribute to the overall performance measured in terms of mAP. Our study suggests that the samples in each mini-batch are neither independent nor equally important, and therefore a better classifier on average does not necessarily mean higher mAP. Motivated by this study, we propose the notion of Prime Samples, those that play a key role in driving the detection performance. We further develop a simple yet effective sampling and learning strategy called PrIme Sample Attention (PISA) that directs the focus of the training process towards such samples. Our experiments demonstrate that it is often more effective to focus on prime samples than hard samples when training a detector. Particularly, On the MSCOCO dataset, PISA outperforms the random sampling baseline and hard mining schemes, e.g. OHEM and Focal Loss, consistently by more than 1% on both single-stage and two-stage detectors, with a strong backbone ResNeXt-101.

We introduce a generic framework that reduces the computational cost of object detection while retaining accuracy for scenarios where objects with varied sizes appear in high resolution images. Detection progresses in a coarse-to-fine manner, first on a down-sampled version of the image and then on a sequence of higher resolution regions identified as likely to improve the detection accuracy. Built upon reinforcement learning, our approach consists of a model (R-net) that uses coarse detection results to predict the potential accuracy gain for analyzing a region at a higher resolution and another model (Q-net) that sequentially selects regions to zoom in. Experiments on the Caltech Pedestrians dataset show that our approach reduces the number of processed pixels by over 50% without a drop in detection accuracy. The merits of our approach become more significant on a high resolution test set collected from YFCC100M dataset, where our approach maintains high detection performance while reducing the number of processed pixels by about 70% and the detection time by over 50%.

北京阿比特科技有限公司