亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Often robots are seen as a means to an end to fulfill a logical objective task. Android robots, on the other hand, provide new possibilities to fulfill emotional tasks and could therefore be integrated into assistive scenarios. We explored this possibility by letting older adults and stakeholders have a conversation with an android robot capable of expressing emotion through facial expressions. The study was carried out with a wizard-of-oz approach and data collected with a mixed methods approach. We found that the participants were encouraged to speak more with the robot due to its smile. Simultaneously, many ethical questions were raised about transparency and manipulation. Our research can give valuable insight into the reaction of older adults to android robots that show emotions.

相關內容

In manufacturing settings, data collection and analysis are often a time-consuming, challenging, and costly process. It also hinders the use of advanced machine learning and data-driven methods which require a substantial amount of offline training data to generate good results. It is particularly challenging for small manufacturers who do not share the resources of a large enterprise. Recently, with the introduction of the Internet of Things (IoT), data can be collected in an integrated manner across the factory in real-time, sent to the cloud for advanced analysis, and used to update the machine learning model sequentially. Nevertheless, small manufacturers face two obstacles in reaping the benefits of IoT: they may be unable to afford or generate enough data to operate a private cloud, and they may be hesitant to share their raw data with a public cloud. Federated learning (FL) is an emerging concept of collaborative learning that can help small-scale industries address these issues and learn from each other without sacrificing their privacy. It can bring together diverse and geographically dispersed manufacturers under the same analytics umbrella to create a win-win situation. However, the widespread adoption of FL across multiple manufacturing organizations remains a significant challenge. This study aims to review the challenges and future directions of applying federated learning in the manufacturing industry, with a specific emphasis on the perspectives of Industry 4.0 and 5.0.

Robotic platforms that can efficiently collaborate with humans in physical tasks constitute a major goal in robotics. However, many existing robotic platforms are either designed for social interaction or industrial object manipulation tasks. The design of collaborative robots seldom emphasizes both their social interaction and physical collaboration abilities. To bridge this gap, we present the novel semi-humanoid NICOL, the Neuro-Inspired COLlaborator. NICOL is a large, newly designed, scaled-up version of its well-evaluated predecessor, the Neuro-Inspired COmpanion (NICO). While we adopt NICO's head and facial expression display, we extend its manipulation abilities in terms of precision, object size and workspace size. To introduce and evaluate NICOL, we first develop and extend different neural and hybrid neuro-genetic visuomotor approaches initially developed for the NICO to the larger NICOL and its more complex kinematics. Furthermore, we present a novel neuro-genetic approach that improves the grasp accuracy of the NICOL to over 99%, outperforming the state-of-the-art IK solvers KDL, TRACK-IK and BIO-IK. Furthermore, we introduce the social interaction capabilities of NICOL, including the auditory and visual capabilities, but also the face and emotion generation capabilities. Overall, this article presents for the first time the humanoid robot NICOL and, thereby, with the neuro-genetic approaches, contributes to the integration of social robotics and neural visuomotor learning for humanoid robots.

A Conversational Recommender System (CRS) offers increased transparency and control to users by enabling them to engage with the system through a real-time multi-turn dialogue. Recently, Large Language Models (LLMs) have exhibited an unprecedented ability to converse naturally and incorporate world knowledge and common-sense reasoning into language understanding, unlocking the potential of this paradigm. However, effectively leveraging LLMs within a CRS introduces new technical challenges, including properly understanding and controlling a complex conversation and retrieving from external sources of information. These issues are exacerbated by a large, evolving item corpus and a lack of conversational data for training. In this paper, we provide a roadmap for building an end-to-end large-scale CRS using LLMs. In particular, we propose new implementations for user preference understanding, flexible dialogue management and explainable recommendations as part of an integrated architecture powered by LLMs. For improved personalization, we describe how an LLM can consume interpretable natural language user profiles and use them to modulate session-level context. To overcome conversational data limitations in the absence of an existing production CRS, we propose techniques for building a controllable LLM-based user simulator to generate synthetic conversations. As a proof of concept we introduce RecLLM, a large-scale CRS for YouTube videos built on LaMDA, and demonstrate its fluency and diverse functionality through some illustrative example conversations.

Enabling robots to learn novel visuomotor skills in a data-efficient manner remains an unsolved problem with myriad challenges. A popular paradigm for tackling this problem is through leveraging large unlabeled datasets that have many behaviors in them and then adapting a policy to a specific task using a small amount of task-specific human supervision (i.e. interventions or demonstrations). However, how best to leverage the narrow task-specific supervision and balance it with offline data remains an open question. Our key insight in this work is that task-specific data not only provides new data for an agent to train on but can also inform the type of prior data the agent should use for learning. Concretely, we propose a simple approach that uses a small amount of downstream expert data to selectively query relevant behaviors from an offline, unlabeled dataset (including many sub-optimal behaviors). The agent is then jointly trained on the expert and queried data. We observe that our method learns to query only the relevant transitions to the task, filtering out sub-optimal or task-irrelevant data. By doing so, it is able to learn more effectively from the mix of task-specific and offline data compared to naively mixing the data or only using the task-specific data. Furthermore, we find that our simple querying approach outperforms more complex goal-conditioned methods by 20% across simulated and real robotic manipulation tasks from images. See //sites.google.com/view/behaviorretrieval for videos and code.

Imitation is a key component of human social behavior, and is widely used by both children and adults as a way to navigate uncertain or unfamiliar situations. But in an environment populated by multiple heterogeneous agents pursuing different goals or objectives, indiscriminate imitation is unlikely to be an effective strategy -- the imitator must instead determine who is most useful to copy. There are likely many factors that play into these judgements, depending on context and availability of information. Here we investigate the hypothesis that these decisions involve inferences about other agents' reward functions. We suggest that people preferentially imitate the behavior of others they deem to have similar reward functions to their own. We further argue that these inferences can be made on the basis of very sparse or indirect data, by leveraging an inductive bias toward positing the existence of different \textit{groups} or \textit{types} of people with similar reward functions, allowing learners to select imitation targets without direct evidence of alignment.

Video games are one of the richest and most popular forms of human-computer interaction and, hence, their role is critical for our understanding of human behaviour and affect at a large scale. As artificial intelligence (AI) tools are gradually adopted by the game industry a series of ethical concerns arise. Such concerns, however, have so far not been extensively discussed in a video game context. Motivated by the lack of a comprehensive review of the ethics of AI as applied to games, we survey the current state of the art in this area and discuss ethical considerations of these systems from the holistic perspective of the affective loop. Through the components of this loop, we study the ethical challenges that AI faces in video game development. Elicitation highlights the ethical boundaries of artificially induced emotions; sensing showcases the trade-off between privacy and safe gaming spaces; and detection, as utilised during in-game adaptation, poses challenges to transparency and ownership. This paper calls for an open dialogue and action for the games of today and the virtual spaces of the future. By setting an appropriate framework we aim to protect users and to guide developers towards safer and better experiences for their customers.

Research in Fairness, Accountability, Transparency, and Ethics (FATE) has established many sources and forms of algorithmic harm, in domains as diverse as health care, finance, policing, and recommendations. Much work remains to be done to mitigate the serious harms of these systems, particularly those disproportionately affecting marginalized communities. Despite these ongoing harms, new systems are being developed and deployed which threaten the perpetuation of the same harms and the creation of novel ones. In response, the FATE community has emphasized the importance of anticipating harms. Our work focuses on the anticipation of harms from increasingly agentic systems. Rather than providing a definition of agency as a binary property, we identify 4 key characteristics which, particularly in combination, tend to increase the agency of a given algorithmic system: underspecification, directness of impact, goal-directedness, and long-term planning. We also discuss important harms which arise from increasing agency -- notably, these include systemic and/or long-range impacts, often on marginalized stakeholders. We emphasize that recognizing agency of algorithmic systems does not absolve or shift the human responsibility for algorithmic harms. Rather, we use the term agency to highlight the increasingly evident fact that ML systems are not fully under human control. Our work explores increasingly agentic algorithmic systems in three parts. First, we explain the notion of an increase in agency for algorithmic systems in the context of diverse perspectives on agency across disciplines. Second, we argue for the need to anticipate harms from increasingly agentic systems. Third, we discuss important harms from increasingly agentic systems and ways forward for addressing them. We conclude by reflecting on implications of our work for anticipating algorithmic harms from emerging systems.

Autonomous vehicles (AVs) are envisioned to revolutionize our life by providing safe, relaxing, and convenient ground transportation. The computing systems in such vehicles are required to interpret various sensor data and generate responses to the environment in a timely manner to ensure driving safety. However, such timing-related safety requirements are largely unexplored in prior works. In this paper, we conduct a systematic study to understand the timing requirements of AV systems. We focus on investigating and mitigating the sources of tail latency in Level-4 AV computing systems. We observe that the performance of AV algorithms is not uniformly distributed -- instead, the latency is susceptible to vehicle environment fluctuations, such as traffic density. This contributes to burst computation and memory access in response to the traffic, and further leads to tail latency in the system. Furthermore, we observe that tail latency also comes from a mismatch between the pre-configured AV computation pipeline and the dynamic latency requirements in real-world driving scenarios. Based on these observations, we propose a set of system designs to mitigate AV tail latency. We demonstrate our design on widely-used industrial Level-4 AV systems, Baidu Apollo and Autoware. The evaluation shows that our design achieves 1.65 X improvement over the worst-case latency and 1.3 X over the average latency, and avoids 93% of accidents on Apollo.

Multimodality Representation Learning, as a technique of learning to embed information from different modalities and their correlations, has achieved remarkable success on a variety of applications, such as Visual Question Answering (VQA), Natural Language for Visual Reasoning (NLVR), and Vision Language Retrieval (VLR). Among these applications, cross-modal interaction and complementary information from different modalities are crucial for advanced models to perform any multimodal task, e.g., understand, recognize, retrieve, or generate optimally. Researchers have proposed diverse methods to address these tasks. The different variants of transformer-based architectures performed extraordinarily on multiple modalities. This survey presents the comprehensive literature on the evolution and enhancement of deep learning multimodal architectures to deal with textual, visual and audio features for diverse cross-modal and modern multimodal tasks. This study summarizes the (i) recent task-specific deep learning methodologies, (ii) the pretraining types and multimodal pretraining objectives, (iii) from state-of-the-art pretrained multimodal approaches to unifying architectures, and (iv) multimodal task categories and possible future improvements that can be devised for better multimodal learning. Moreover, we prepare a dataset section for new researchers that covers most of the benchmarks for pretraining and finetuning. Finally, major challenges, gaps, and potential research topics are explored. A constantly-updated paperlist related to our survey is maintained at //github.com/marslanm/multimodality-representation-learning.

Recommender systems play a fundamental role in web applications in filtering massive information and matching user interests. While many efforts have been devoted to developing more effective models in various scenarios, the exploration on the explainability of recommender systems is running behind. Explanations could help improve user experience and discover system defects. In this paper, after formally introducing the elements that are related to model explainability, we propose a novel explainable recommendation model through improving the transparency of the representation learning process. Specifically, to overcome the representation entangling problem in traditional models, we revise traditional graph convolution to discriminate information from different layers. Also, each representation vector is factorized into several segments, where each segment relates to one semantic aspect in data. Different from previous work, in our model, factor discovery and representation learning are simultaneously conducted, and we are able to handle extra attribute information and knowledge. In this way, the proposed model can learn interpretable and meaningful representations for users and items. Unlike traditional methods that need to make a trade-off between explainability and effectiveness, the performance of our proposed explainable model is not negatively affected after considering explainability. Finally, comprehensive experiments are conducted to validate the performance of our model as well as explanation faithfulness.

北京阿比特科技有限公司