Retrofitting and thermographic survey (TS) companies in Scotland collaborate with social housing providers to tackle fuel poverty. They employ ground-level infrared (IR) camera-based-TSs (GIRTSs) for collecting thermal images to identi-fy the heat loss sources resulting from poor insulation. However, this identifica-tion process is labor-intensive and time-consuming, necessitating extensive data processing. To automate this, an AI-driven approach is necessary. Therefore, this study proposes a deep learning (DL)-based segmentation framework using the Mask Region Proposal Convolutional Neural Network (Mask RCNN) to validate its applicability to these thermal images. The objective of the framework is to au-tomatically identify, and crop heat loss sources caused by weak insulation, while also eliminating obstructive objects present in those images. By doing so, it min-imizes labor-intensive tasks and provides an automated, consistent, and reliable solution. To validate the proposed framework, approximately 2500 thermal imag-es were collected in collaboration with industrial TS partner. Then, 1800 repre-sentative images were carefully selected with the assistance of experts and anno-tated to highlight the target objects (TO) to form the final dataset. Subsequently, a transfer learning strategy was employed to train the dataset, progressively aug-menting the training data volume and fine-tuning the pre-trained baseline Mask RCNN. As a result, the final fine-tuned model achieved a mean average precision (mAP) score of 77.2% for segmenting the TO, demonstrating the significant po-tential of proposed framework in accurately quantifying energy loss in Scottish homes.
Advancements in deep neural networks have allowed automatic speech recognition (ASR) systems to attain human parity on several publicly available clean speech datasets. However, even state-of-the-art ASR systems experience performance degradation when confronted with adverse conditions, as a well-trained acoustic model is sensitive to variations in the speech domain, e.g., background noise. Intuitively, humans address this issue by relying on their linguistic knowledge: the meaning of ambiguous spoken terms is usually inferred from contextual cues thereby reducing the dependency on the auditory system. Inspired by this observation, we introduce the first open-source benchmark to utilize external large language models (LLMs) for ASR error correction, where N-best decoding hypotheses provide informative elements for true transcription prediction. This approach is a paradigm shift from the traditional language model rescoring strategy that can only select one candidate hypothesis as the output transcription. The proposed benchmark contains a novel dataset, HyPoradise (HP), encompassing more than 334,000 pairs of N-best hypotheses and corresponding accurate transcriptions across prevalent speech domains. Given this dataset, we examine three types of error correction techniques based on LLMs with varying amounts of labeled hypotheses-transcription pairs, which gains a significant word error rate (WER) reduction. Experimental evidence demonstrates the proposed technique achieves a breakthrough by surpassing the upper bound of traditional re-ranking based methods. More surprisingly, LLM with reasonable prompt and its generative capability can even correct those tokens that are missing in N-best list. We make our results publicly accessible for reproducible pipelines with released pre-trained models, thus providing a new evaluation paradigm for ASR error correction with LLMs.
We propose a Holistic Return on Ethics (HROE) framework for understanding the return on organizational investments in artificial intelligence (AI) ethics efforts. This framework is useful for organizations that wish to quantify the return for their investment decisions. The framework identifies the direct economic returns of such investments, the indirect paths to return through intangibles associated with organizational reputation, and real options associated with capabilities. The holistic framework ultimately provides organizations with the competency to employ and justify AI ethics investments.
We present an exploration of cultural norms surrounding online disclosure of information about one's interpersonal relationships (such as information about family members, colleagues, friends, or lovers) on Twitter. The literature identifies the cultural dimension of individualism versus collectivism as being a major determinant of offline communication differences in terms of emotion, topic, and content disclosed. We decided to study whether such differences also occur online in context of Twitter when comparing tweets posted in an individualistic (U.S.) versus a collectivist (India) society. We collected more than 2 million tweets posted in the U.S. and India over a 3 month period which contain interpersonal relationship keywords. A card-sort study was used to develop this culturally-sensitive saturated taxonomy of keywords that represent interpersonal relationships (e.g., ma, mom, mother). Then we developed a high-accuracy interpersonal disclosure detector based on dependency-parsing (F1-score: 86%) to identify when the words refer to a personal relationship of the poster (e.g., "my mom" as opposed to "a mom"). This allowed us to identify the 400K+ tweets in our data set which actually disclose information about the poster's interpersonal relationships. We used a mixed methods approach to analyze these tweets (e.g., comparing the amount of joy expressed about one's family) and found differences in emotion, topic, and content disclosed between tweets from the U.S. versus India. Our analysis also reveals how a combination of qualitative and quantitative methods are needed to uncover these differences; Using just one or the other can be misleading. This study extends the prior literature on Multi-Party Privacy and provides guidance for researchers and designers of culturally-sensitive systems.
This study explores the capabilities of Large Language Models (LLMs), particularly OpenAI's ChatGPT, in addressing the challenges associated with software modeling, explicitly focusing on the bidirectional traceability problem between design models and code. The objective of this study is to demonstrate the proficiency of ChatGPT in understanding and integrating specific requirements into design models and code and its potential to offer solutions to the bidirectional traceability problem through a case study. The findings indicate that ChatGPT is capable of generating design models and code from natural language requirements, thereby bridging the gap between these requirements and software modeling. Despite its limitations in suggesting a specific method to resolve the problem using ChatGPT itself, it exhibited the capacity to provide corrections to be consistent between design models and code. As a result, the study concludes that achieving bidirectional traceability between design models and code is feasible using ChatGPT.
Understanding the fundamental principles behind the success of deep neural networks is one of the most important open questions in the current literature. To this end, we study the training problem of deep neural networks and introduce an analytic approach to unveil hidden convexity in the optimization landscape. We consider a deep parallel ReLU network architecture, which also includes standard deep networks and ResNets as its special cases. We then show that pathwise regularized training problems can be represented as an exact convex optimization problem. We further prove that the equivalent convex problem is regularized via a group sparsity inducing norm. Thus, a path regularized parallel ReLU network can be viewed as a parsimonious convex model in high dimensions. More importantly, since the original training problem may not be trainable in polynomial-time, we propose an approximate algorithm with a fully polynomial-time complexity in all data dimensions. Then, we prove strong global optimality guarantees for this algorithm. We also provide experiments corroborating our theory.
Explainable artificial intelligence (XAI) methods are portrayed as a remedy for debugging and trusting statistical and deep learning models, as well as interpreting their predictions. However, recent advances in adversarial machine learning (AdvML) highlight the limitations and vulnerabilities of state-of-the-art explanation methods, putting their security and trustworthiness into question. The possibility of manipulating, fooling or fairwashing evidence of the model's reasoning has detrimental consequences when applied in high-stakes decision-making and knowledge discovery. This survey provides a comprehensive overview of research concerning adversarial attacks on explanations of machine learning models, as well as fairness metrics. We introduce a unified notation and taxonomy of methods facilitating a common ground for researchers and practitioners from the intersecting research fields of AdvML and XAI. We discuss how to defend against attacks and design robust interpretation methods. We contribute a list of existing insecurities in XAI and outline the emerging research directions in adversarial XAI (AdvXAI). Future work should address improving explanation methods and evaluation protocols to take into account the reported safety issues.
Large-scale pre-trained models (PTMs) such as BERT and GPT have achieved great success in diverse fields. The typical paradigm is to pre-train a big deep learning model on large-scale data sets, and then fine-tune the model on small task-specific data sets for downstream tasks. Although PTMs have rapidly progressed with wide real-world applications, they also pose significant risks of potential attacks. Existing backdoor attacks or data poisoning methods often build up the assumption that the attacker invades the computers of victims or accesses the target data, which is challenging in real-world scenarios. In this paper, we propose a novel framework for an invisible attack on PTMs with enhanced MD5 collision. The key idea is to generate two equal-size models with the same MD5 checksum by leveraging the MD5 chosen-prefix collision. Afterwards, the two ``same" models will be deployed on public websites to induce victims to download the poisoned model. Unlike conventional attacks on deep learning models, this new attack is flexible, covert, and model-independent. Additionally, we propose a simple defensive strategy for recognizing the MD5 chosen-prefix collision and provide a theoretical justification for its feasibility. We extensively validate the effectiveness and stealthiness of our proposed attack and defensive method on different models and data sets.
Large language models (LLMs) have demonstrated great potential in natural language processing tasks within the financial domain. In this work, we present a Chinese Financial Generative Pre-trained Transformer framework, named CFGPT, which includes a dataset~(CFData) for pre-training and supervised fine-tuning, a financial LLM~(CFLLM) to adeptly manage financial texts, and a deployment framework~(CFAPP) designed to navigate real-world financial applications. The CFData comprising both a pre-training dataset and a supervised fine-tuning dataset, where the pre-training dataset collates Chinese financial data and analytics, alongside a smaller subset of general-purpose text with 584M documents and 141B tokens in total, and the supervised fine-tuning dataset is tailored for six distinct financial tasks, embodying various facets of financial analysis and decision-making with 1.5M instruction pairs and 1.5B tokens in total. The CFLLM, which is based on InternLM-7B to balance the model capability and size, is trained on CFData in two stage, continued pre-training and supervised fine-tuning. The CFAPP is centered on large language models (LLMs) and augmented with additional modules to ensure multifaceted functionality in real-world application. Our codes are released at //github.com/TongjiFinLab/CFGPT.
We propose a robust and reliable evaluation metric for generative models by introducing topological and statistical treatments for rigorous support estimation. Existing metrics, such as Inception Score (IS), Frechet Inception Distance (FID), and the variants of Precision and Recall (P&R), heavily rely on supports that are estimated from sample features. However, the reliability of their estimation has not been seriously discussed (and overlooked) even though the quality of the evaluation entirely depends on it. In this paper, we propose Topological Precision and Recall (TopP&R, pronounced 'topper'), which provides a systematic approach to estimating supports, retaining only topologically and statistically important features with a certain level of confidence. This not only makes TopP&R strong for noisy features, but also provides statistical consistency. Our theoretical and experimental results show that TopP&R is robust to outliers and non-independent and identically distributed (Non-IID) perturbations, while accurately capturing the true trend of change in samples. To the best of our knowledge, this is the first evaluation metric focused on the robust estimation of the support and provides its statistical consistency under noise.
Fish tracking plays a vital role in understanding fish behavior and ecology. However, existing tracking methods face challenges in accuracy and robustness dues to morphological change of fish, occlusion and complex environment. This paper proposes FishMOT(Multiple Object Tracking for Fish), a novel fish tracking approach combining object detection and IoU matching, including basic module, interaction module and refind module. Wherein, a basic module performs target association based on IoU of detection boxes between successive frames to deal with morphological change of fish; an interaction module combines IoU of detection boxes and IoU of fish entity to handle occlusions; a refind module use spatio-temporal information uses spatio-temporal information to overcome the tracking failure resulting from the missed detection by the detector under complex environment. FishMOT reduces the computational complexity and memory consumption since it does not require complex feature extraction or identity assignment per fish, and does not need Kalman filter to predict the detection boxes of successive frame. Experimental results demonstrate FishMOT outperforms state-of-the-art multi-object trackers and specialized fish tracking tools in terms of MOTA, accuracy, computation time, memory consumption, etc.. Furthermore, the method exhibits excellent robustness and generalizability for varying environments and fish numbers. The simplified workflow and strong performance make FishMOT as a highly effective fish tracking approach. The source codes and pre-trained models are available at: //github.com/gakkistar/FishMOT