Chromogenic RNAscope dye and haematoxylin staining of cancer tissue facilitates diagnosis of the cancer type and subsequent treatment, and fits well into existing pathology workflows. However, manual quantification of the RNAscope transcripts (dots), which signify gene expression, is prohibitively time consuming. In addition, there is a lack of verified supporting methods for quantification and analysis. This paper investigates the usefulness of gray level texture features for automatically segmenting and classifying the positions of RNAscope transcripts from breast cancer tissue. Feature analysis showed that a small set of gray level features, including Gray Level Dependence Matrix and Neighbouring Gray Tone Difference Matrix features, were well suited for the task. The automated method performed similarly to expert annotators at identifying the positions of RNAscope transcripts, with an F1-score of 0.571 compared to the expert inter-rater F1-score of 0.596. These results demonstrate the potential of gray level texture features for automated quantification of RNAscope in the pathology workflow.
Transformers achieve state-of-the-art accuracy and robustness across many tasks, but an understanding of the inductive biases that they have and how those biases are different from other neural network architectures remains elusive. Various neural network architectures such as fully connected networks have been found to have a simplicity bias towards simple functions of the data; one version of this simplicity bias is a spectral bias to learn simple functions in the Fourier space. In this work, we identify the notion of sensitivity of the model to random changes in the input as a notion of simplicity bias which provides a unified metric to explain the simplicity and spectral bias of transformers across different data modalities. We show that transformers have lower sensitivity than alternative architectures, such as LSTMs, MLPs and CNNs, across both vision and language tasks. We also show that low-sensitivity bias correlates with improved robustness; furthermore, it can also be used as an efficient intervention to further improve the robustness of transformers.
We show that protein sequences can be thought of as sentences in natural language processing and can be parsed using the existing Quantum Natural Language framework into parameterized quantum circuits of reasonable qubits, which can be trained to solve various protein-related machine-learning problems. We classify proteins based on their subcellular locations, a pivotal task in bioinformatics that is key to understanding biological processes and disease mechanisms. Leveraging the quantum-enhanced processing capabilities, we demonstrate that Quantum Tensor Networks (QTN) can effectively handle the complexity and diversity of protein sequences. We present a detailed methodology that adapts QTN architectures to the nuanced requirements of protein data, supported by comprehensive experimental results. We demonstrate two distinct QTNs, inspired by classical recurrent neural networks (RNN) and convolutional neural networks (CNN), to solve the binary classification task mentioned above. Our top-performing quantum model has achieved a 94% accuracy rate, which is comparable to the performance of a classical model that uses the ESM2 protein language model embeddings. It's noteworthy that the ESM2 model is extremely large, containing 8 million parameters in its smallest configuration, whereas our best quantum model requires only around 800 parameters. We demonstrate that these hybrid models exhibit promising performance, showcasing their potential to compete with classical models of similar complexity.
Electrocardiograms (ECGs) are non-invasive diagnostic tools crucial for detecting cardiac arrhythmic diseases in clinical practice. While ECG Self-supervised Learning (eSSL) methods show promise in representation learning from unannotated ECG data, they often overlook the clinical knowledge that can be found in reports. This oversight and the requirement for annotated samples for downstream tasks limit eSSL's versatility. In this work, we address these issues with the Multimodal ECG Representation Learning (MERL}) framework. Through multimodal learning on ECG records and associated reports, MERL is capable of performing zero-shot ECG classification with text prompts, eliminating the need for training data in downstream tasks. At test time, we propose the Clinical Knowledge Enhanced Prompt Engineering (CKEPE) approach, which uses Large Language Models (LLMs) to exploit external expert-verified clinical knowledge databases, generating more descriptive prompts and reducing hallucinations in LLM-generated content to boost zero-shot classification. Based on MERL, we perform the first benchmark across six public ECG datasets, showing the superior performance of MERL compared against eSSL methods. Notably, MERL achieves an average AUC score of 75.2% in zero-shot classification (without training data), 3.2% higher than linear probed eSSL methods with 10\% annotated training data, averaged across all six datasets.
Brain-related diseases are more sensitive than other diseases due to several factors, including the complexity of surgical procedures, high costs, and other challenges. Alzheimer's disease is a common brain disorder that causes memory loss and the shrinking of brain cells. Early detection is critical for providing proper treatment to patients. However, identifying Alzheimer's at an early stage using manual scanning of CT or MRI scans is challenging. Therefore, researchers have delved into the exploration of computer-aided systems, employing Machine Learning and Deep Learning methodologies, which entail the training of datasets to detect Alzheimer's disease. This study aims to present a hybrid model that combines a CNN model's feature extraction capabilities with an LSTM model's detection capabilities. This study has applied the transfer learning called VGG16 in the hybrid model to extract features from MRI images. The LSTM detects features between the convolution layer and the fully connected layer. The output layer of the fully connected layer uses the softmax function. The training of the hybrid model involved utilizing the ADNI dataset. The trial findings revealed that the model achieved a level of accuracy of 98.8%, a sensitivity rate of 100%, and a specificity rate of 76%. The proposed hybrid model outperforms its contemporary CNN counterparts, showcasing a superior performance.
Electronic health records (EHR) is an inherently multimodal register of the patient's health status characterized by static data and multivariate time series (MTS). While MTS are a valuable tool for clinical prediction, their fusion with other data modalities can possibly result in more thorough insights and more accurate results. Deep neural networks (DNNs) have emerged as fundamental tools for identifying and defining underlying patterns in the healthcare domain. However, fundamental improvements in interpretability are needed for DNN models to be widely used in the clinical setting. In this study, we present an approach built on a collection of interpretable multimodal data-driven models that may anticipate and understand the emergence of antimicrobial multidrug resistance (AMR) germs in the intensive care unit (ICU) of the University Hospital of Fuenlabrada (Madrid, Spain). The profile and initial health status of the patient are modeled using static variables, while the evolution of the patient's health status during the ICU stay is modeled using several MTS, including mechanical ventilation and antibiotics intake. The multimodal DNNs models proposed in this paper include interpretable principles in addition to being effective at predicting AMR and providing an explainable prediction support system for AMR in the ICU. Furthermore, our proposed methodology based on multimodal models and interpretability schemes can be leveraged in additional clinical problems dealing with EHR data, broadening the impact and applicability of our results.
Recently, pathological diagnosis, the gold standard for cancer diagnosis, has achieved superior performance by combining the Transformer with the multiple instance learning (MIL) framework using whole slide images (WSIs). However, the giga-pixel nature of WSIs poses a great challenge for the quadratic-complexity self-attention mechanism in Transformer to be applied in MIL. Existing studies usually use linear attention to improve computing efficiency but inevitably bring performance bottlenecks. To tackle this challenge, we propose a MamMIL framework for WSI classification by cooperating the selective structured state space model (i.e., Mamba) with MIL for the first time, enabling the modeling of instance dependencies while maintaining linear complexity. Specifically, to solve the problem that Mamba can only conduct unidirectional one-dimensional (1D) sequence modeling, we innovatively introduce a bidirectional state space model and a 2D context-aware block to enable MamMIL to learn the bidirectional instance dependencies with 2D spatial relationships. Experiments on two datasets show that MamMIL can achieve advanced classification performance with smaller memory footprints than the state-of-the-art MIL frameworks based on the Transformer. The code will be open-sourced if accepted.
Individualized treatment rules (ITRs) have been widely applied in many fields such as precision medicine and personalized marketing. Beyond the extensive studies on ITR for binary or multiple treatments, there is considerable interest in applying combination treatments. This paper introduces a novel ITR estimation method for combination treatments incorporating interaction effects among treatments. Specifically, we propose the generalized $\psi$-loss as a non-convex surrogate in the residual weighted learning framework, offering desirable statistical and computational properties. Statistically, the minimizer of the proposed surrogate loss is Fisher-consistent with the optimal decision rules, incorporating interaction effects at any intensity level - a significant improvement over existing methods. Computationally, the proposed method applies the difference-of-convex algorithm for efficient computation. Through simulation studies and real-world data applications, we demonstrate the superior performance of the proposed method in recommending combination treatments.
Understanding causality helps to structure interventions to achieve specific goals and enables predictions under interventions. With the growing importance of learning causal relationships, causal discovery tasks have transitioned from using traditional methods to infer potential causal structures from observational data to the field of pattern recognition involved in deep learning. The rapid accumulation of massive data promotes the emergence of causal search methods with brilliant scalability. Existing summaries of causal discovery methods mainly focus on traditional methods based on constraints, scores and FCMs, there is a lack of perfect sorting and elaboration for deep learning-based methods, also lacking some considers and exploration of causal discovery methods from the perspective of variable paradigms. Therefore, we divide the possible causal discovery tasks into three types according to the variable paradigm and give the definitions of the three tasks respectively, define and instantiate the relevant datasets for each task and the final causal model constructed at the same time, then reviews the main existing causal discovery methods for different tasks. Finally, we propose some roadmaps from different perspectives for the current research gaps in the field of causal discovery and point out future research directions.
We consider the problem of explaining the predictions of graph neural networks (GNNs), which otherwise are considered as black boxes. Existing methods invariably focus on explaining the importance of graph nodes or edges but ignore the substructures of graphs, which are more intuitive and human-intelligible. In this work, we propose a novel method, known as SubgraphX, to explain GNNs by identifying important subgraphs. Given a trained GNN model and an input graph, our SubgraphX explains its predictions by efficiently exploring different subgraphs with Monte Carlo tree search. To make the tree search more effective, we propose to use Shapley values as a measure of subgraph importance, which can also capture the interactions among different subgraphs. To expedite computations, we propose efficient approximation schemes to compute Shapley values for graph data. Our work represents the first attempt to explain GNNs via identifying subgraphs explicitly and directly. Experimental results show that our SubgraphX achieves significantly improved explanations, while keeping computations at a reasonable level.
Clinical Named Entity Recognition (CNER) aims to identify and classify clinical terms such as diseases, symptoms, treatments, exams, and body parts in electronic health records, which is a fundamental and crucial task for clinical and translational research. In recent years, deep neural networks have achieved significant success in named entity recognition and many other Natural Language Processing (NLP) tasks. Most of these algorithms are trained end to end, and can automatically learn features from large scale labeled datasets. However, these data-driven methods typically lack the capability of processing rare or unseen entities. Previous statistical methods and feature engineering practice have demonstrated that human knowledge can provide valuable information for handling rare and unseen cases. In this paper, we address the problem by incorporating dictionaries into deep neural networks for the Chinese CNER task. Two different architectures that extend the Bi-directional Long Short-Term Memory (Bi-LSTM) neural network and five different feature representation schemes are proposed to handle the task. Computational results on the CCKS-2017 Task 2 benchmark dataset show that the proposed method achieves the highly competitive performance compared with the state-of-the-art deep learning methods.