亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

A set $S$ of vertices of a digraph $D$ is called an open neighbourhood locating-dominating set if every vertex in $D$ has an in-neighbour in $S$, and for every pair $u,v$ of vertices of $D$, there is a vertex in $S$ that is an in-neighbour of exactly one of $u$ and $v$. The smallest size of an open neighbourhood locating-dominating set of a digraph $D$ is denoted by $\gamma_{OL}(D)$. We study the class of digraphs $D$ whose only open neighbourhood locating-dominating set consists of the whole set of vertices, in other words, $\gamma_{OL}(D)$ is equal to the order of $D$. We call those digraphs extremal. By considering digraphs with loops allowed, our definition also applies to the related (and more widely studied) concept of identifying codes. We extend previous studies from the literature for both open neighbourhood locating-dominating sets and identifying codes of both undirected and directed graphs. These results all correspond to studying open neighbourhood locating-dominating sets on special classes of digraphs. To do so, we prove general structural properties of extremal digraphs, and we describe how they can all be constructed. We then use these properties to give new proofs of several known results from the literature. We also give a recursive and constructive characterization of the extremal di-trees (digraphs whose underlying undirected graph is a tree).

相關內容

We study the problem of adaptive variable selection in a Gaussian white noise model of intensity $\varepsilon$ under certain sparsity and regularity conditions on an unknown regression function $f$. The $d$-variate regression function $f$ is assumed to be a sum of functions each depending on a smaller number $k$ of variables ($1 \leq k \leq d$). These functions are unknown to us and only few of them are nonzero. We assume that $d=d_\varepsilon \to \infty$ as $\varepsilon \to 0$ and consider the cases when $k$ is fixed and when $k=k_\varepsilon \to \infty$, $k=o(d)$ as $\varepsilon \to 0$. In this work, we introduce an adaptive selection procedure that, under some model assumptions, identifies exactly all nonzero $k$-variate components of $f$. In addition, we establish conditions under which exact identification of the nonzero components is impossible. These conditions ensure that the proposed selection procedure is the best possible in the asymptotically minimax sense with respect to the Hamming risk.

A linear code $C$ over $\mathbb{F}_q$ is called $\Delta$-divisible if the Hamming weights $\operatorname{wt}(c)$ of all codewords $c \in C$ are divisible by $\Delta$. The possible effective lengths of $q^r$-divisible codes have been completely characterized for each prime power $q$ and each non-negative integer $r$. The study of $\Delta$ divisible codes was initiated by Harold Ward. If $c$ divides $\Delta$ but is coprime to $q$, then each $\Delta$-divisible code $C$ over $\F_q$ is the $c$-fold repetition of a $\Delta/c$-divisible code. Here we determine the possible effective lengths of $p^r$-divisible codes over finite fields of characteristic $p$, where $p\in\mathbb{N}$ but $p^r$ is not a power of the field size, i.e., the missing cases.

A finite-energy signal is represented by a square-integrable, complex-valued function $t\mapsto s(t)$ of a real variable $t$, interpreted as time. Similarly, a noisy signal is represented by a random process. Time-frequency analysis, a subfield of signal processing, amounts to describing the temporal evolution of the frequency content of a signal. Loosely speaking, if $s$ is the audio recording of a musical piece, time-frequency analysis somehow consists in writing the musical score of the piece. Mathematically, the operation is performed through a transform $\mathcal{V}$, mapping $s \in L^2(\mathbb{R})$ onto a complex-valued function $\mathcal{V}s \in L^2(\mathbb{R}^2)$ of time $t$ and angular frequency $\omega$. The squared modulus $(t, \omega) \mapsto \vert\mathcal{V}s(t,\omega)\vert^2$ of the time-frequency representation is known as the spectrogram of $s$; in the musical score analogy, a peaked spectrogram at $(t_0,\omega_0)$ corresponds to a musical note at angular frequency $\omega_0$ localized at time $t_0$. More generally, the intuition is that upper level sets of the spectrogram contain relevant information about in the original signal. Hence, many signal processing algorithms revolve around identifying maxima of the spectrogram. In contrast, zeros of the spectrogram indicate perfect silence, that is, a time at which a particular frequency is absent. Assimilating $\mathbb{R}^2$ to $\mathbb{C}$ through $z = \omega + \mathrm{i}t$, this chapter focuses on time-frequency transforms $\mathcal{V}$ that map signals to analytic functions. The zeros of the spectrogram of a noisy signal are then the zeros of a random analytic function, hence forming a Point Process in $\mathbb{C}$. This chapter is devoted to the study of these Point Processes, to their links with zeros of Gaussian Analytic Functions, and to designing signal detection and denoising algorithms using spatial statistics.

Optimal transportation theory and the related $p$-Wasserstein distance ($W_p$, $p\geq 1$) are widely-applied in statistics and machine learning. In spite of their popularity, inference based on these tools has some issues. For instance, it is sensitive to outliers and it may not be even defined when the underlying model has infinite moments. To cope with these problems, first we consider a robust version of the primal transportation problem and show that it defines the {robust Wasserstein distance}, $W^{(\lambda)}$, depending on a tuning parameter $\lambda > 0$. Second, we illustrate the link between $W_1$ and $W^{(\lambda)}$ and study its key measure theoretic aspects. Third, we derive some concentration inequalities for $W^{(\lambda)}$. Fourth, we use $W^{(\lambda)}$ to define minimum distance estimators, we provide their statistical guarantees and we illustrate how to apply the derived concentration inequalities for a data driven selection of $\lambda$. Fifth, we provide the {dual} form of the robust optimal transportation problem and we apply it to machine learning problems (generative adversarial networks and domain adaptation). Numerical exercises provide evidence of the benefits yielded by our novel methods.

Given a function f: [a,b] -> R, if f(a) < 0 and f(b)> 0 and f is continuous, the Intermediate Value Theorem implies that f has a root in [a,b]. Moreover, given a value-oracle for f, an approximate root of f can be computed using the bisection method, and the number of required evaluations is polynomial in the number of accuracy digits. The goal of this note is to identify conditions under which this polynomiality result extends to a multi-dimensional function that satisfies the conditions of Miranda's theorem -- the natural multi-dimensional extension of the Intermediate Value Theorem. In general, finding an approximate root might require an exponential number of evaluations even for a two-dimensional function. We show that, if f is two-dimensional and satisfies a single monotonicity condition, then the number of required evaluations is polynomial in the accuracy. For any fixed dimension d, if f is a d-dimensional function that satisfies all d^2-d ``ex-diagonal'' monotonicity conditions (that is, component i of f is monotonically decreasing with respect to variable j for all i!=j), then the number of required evaluations is polynomial in the accuracy. But if f satisfies only d^2-d-2 ex-diagonal conditions, then the number of required evaluations may be exponential in the accuracy. The case of d^2-d-1 ex-diagonal conditions remains unsolved. As an example application, we show that computing approximate roots of monotone functions can be used for approximate envy-free cake-cutting.

We show that any Lotka--Volterra tree-system associated with an $n$-vertex tree, as introduced in Quispel et al., J. Phys. A 56 (2023) 315201, preserves a rational measure. We also prove that the Kahan discretisation of these tree-systems factorises and preserves the same measure. As a consequence, for the Kahan maps of Lotka--Volterra systems related to the subclass of tree-systems corresponding to graphs with more than one $n$-vertex subtree, we are able to construct rational integrals.

A simple, recently observed generalization of the classical Singleton bound to list-decoding asserts that rate $R$ codes are not list-decodable using list-size $L$ beyond an error fraction $\frac{L}{L+1} (1-R)$ (the Singleton bound being the case of $L=1$, i.e., unique decoding). We prove that in order to approach this bound for any fixed $L >1$, one needs exponential alphabets. Specifically, for every $L>1$ and $R\in(0,1)$, if a rate $R$ code can be list-of-$L$ decoded up to error fraction $\frac{L}{L+1} (1-R -\varepsilon)$, then its alphabet must have size at least $\exp(\Omega_{L,R}(1/\varepsilon))$. This is in sharp contrast to the situation for unique decoding where certain families of rate $R$ algebraic-geometry (AG) codes over an alphabet of size $O(1/\varepsilon^2)$ are unique-decodable up to error fraction $(1-R-\varepsilon)/2$. Our bounds hold even for subconstant $\varepsilon\ge 1/n$, implying that any code exactly achieving the $L$-th generalized Singleton bound requires alphabet size $2^{\Omega_{L,R}(n)}$. Previously this was only known only for $L=2$ under the additional assumptions that the code is both linear and MDS. Our lower bound is tight up to constant factors in the exponent -- with high probability random codes (or, as shown recently, even random linear codes) over $\exp(O_L(1/\varepsilon))$-sized alphabets, can be list-of-$L$ decoded up to error fraction $\frac{L}{L+1} (1-R -\varepsilon)$.

Fully-strict fork-join parallelism is a powerful model for shared-memory programming due to its optimal time scaling and strong bounds on memory scaling. The latter is rarely achieved due to the difficulty of implementing continuation stealing in traditional High Performance Computing (HPC) languages -- where it is often impossible without modifying the compiler or resorting to non-portable techniques. We demonstrate how stackless coroutines (a new feature in C++20) can enable fully-portable continuation stealing and present libfork a lock-free fine-grained parallelism library, combining coroutines with user-space, geometric segmented-stacks. We show our approach is able to achieve optimal time/memory scaling, both theoretically and empirically, across a variety of benchmarks. Compared to openMP (libomp), libfork is on average 7.2x faster and consumes 10x less memory. Similarly, compared to Intel's TBB, libfork is on average 2.7x faster and consumes 6.2x less memory. Additionally, we introduce non-uniform memory access (NUMA) optimizations for schedulers that demonstrate performance matching busy-waiting schedulers.

The approach to analysing compositional data has been dominated by the use of logratio transformations, to ensure exact subcompositional coherence and, in some situations, exact isometry as well. A problem with this approach is that data zeros, found in most applications, have to be replaced to allow the logarithmic transformation. An alternative new approach, called the `chiPower' transformation, which allows data zeros, is to combine the standardization inherent in the chi-square distance in correspondence analysis, with the essential elements of the Box-Cox power transformation. The chiPower transformation is justified because it} defines between-sample distances that tend to logratio distances for strictly positive data as the power parameter tends to zero, and are then equivalent to transforming to logratios. For data with zeros, a value of the power can be identified that brings the chiPower transformation as close as possible to a logratio transformation, without having to substitute the zeros. Especially in the area of high-dimensional data, this alternative approach can present such a high level of coherence and isometry as to be a valid approach to the analysis of compositional data. Furthermore, in a supervised learning context, if the compositional variables serve as predictors of a response in a modelling framework, for example generalized linear models, then the power can be used as a tuning parameter in optimizing the accuracy of prediction through cross-validation. The chiPower-transformed variables have a straightforward interpretation, since they are each identified with single compositional parts, not ratios.

A new approach is developed for computational modelling of microstructure evolution problems. The approach combines the phase-field method with the recently-developed laminated element technique (LET) which is a simple and efficient method to model weak discontinuities using nonconforming finite-element meshes. The essence of LET is in treating the elements that are cut by an interface as simple laminates of the two phases, and this idea is here extended to propagating interfaces so that the volume fraction of the phases and the lamination orientation vary accordingly. In the proposed LET-PF approach, the phase-field variable (order parameter), which is governed by an evolution equation of the Ginzburg-Landau type, plays the role of a level-set function that implicitly defines the position of the (sharp) interface. The mechanical equilibrium subproblem is then solved using the semisharp LET technique. Performance of LET-PF is illustrated by numerical examples. In particular, it is shown that, for the problems studied, LET-PF exhibits higher accuracy than the conventional phase-field method so that, for instance, qualitatively correct results can be obtained using a significantly coarser mesh, and thus at a lower computational cost.

北京阿比特科技有限公司