亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Recommender systems are used to provide relevant suggestions on various matters. Although these systems are a classical research topic, knowledge is still limited regarding the public opinion about these systems. Public opinion is also important because the systems are known to cause various problems. To this end, this paper presents a qualitative analysis of the perceptions of ordinary citizens, civil society groups, businesses, and others on recommender systems in Europe. The dataset examined is based on the answers submitted to a consultation about the Digital Services Act (DSA) recently enacted in the European Union (EU). Therefore, not only does the paper contribute to the pressing question about regulating new technologies and online platforms, but it also reveals insights about the policy-making of the DSA. According to the qualitative results, Europeans have generally negative opinions about recommender systems and the quality of their recommendations. The systems are widely seen to violate privacy and other fundamental rights. According to many Europeans, these also cause various societal problems, including even threats to democracy. Furthermore, existing regulations in the EU are commonly seen to have failed due to a lack of proper enforcement. Numerous suggestions were made by the respondents to the consultation for improving the situation, but only a few of these ended up to the DSA.

相關內容

Branch and bound methods which are based on the principle "divide and conquer" are a well established solution approach in single-objective integer programming. In multi-objective optimization branch and bound algorithms are increasingly attracting interest. However, the larger number of objectives raises additional difficulties for implicit enumeration approaches like branch and bound. Since bounding and pruning is considerably weaker in multiple objectives, many branches have to be (partially) searched and may not be pruned directly. The adaptive use of objective space information can guide the search in promising directions to determine a good approximation of the Pareto front already in early stages of the algorithm. In particular we focus in this article on improving the branching and queuing of subproblems and the handling of lower bound sets. In our numerical test we evaluate the impact of the proposed methods in comparison to a standard implementation of multiobjective branch and bound on knapsack problems, generalized assignment problems and (un)capacitated facility location problems.

Small obstacles on the ground often lead to a fall when caught with commercial prosthetic feet. Despite some recently developed feet can actively control the ankle angle, for instance over slopes, their flat and rigid sole remains a cause of instability on uneven grounds. Soft robotic feet were recently proposed to tackle that issue; however, they lack consistent experimental validation. Therefore, this paper describes the experimental setup realized to test soft and rigid prosthetic feet with lower-limb prosthetic users. It includes a wooden walkway and differently shaped obstacles. It was preliminary validated with an able-bodied subject, the same subject walking on commercial prostheses through modified walking boots, and with a prosthetic user. They performed walking firstly on even ground, and secondly on even ground stepping on one of the obstacles. Results in terms of vertical ground reaction force and knee moments in both the sagittal and frontal planes show how the poor performance of commonly used prostheses is exacerbated in case of obstacles. The prosthetic user, indeed, noticeably relies on the sound leg to compensate for the stiff and unstable interaction of the prosthetic limb with the obstacle. Therefore, since the limitations of non-adaptive prosthetic feet in obstacle-dealing emerge from the experiments, as expected, this study justifies the use of the setup for investigating the performance of soft feet on uneven grounds and obstacle negotiation.

While semantic segmentation has seen tremendous improvements in the past, there are still significant labeling efforts necessary and the problem of limited generalization to classes that have not been present during training. To address this problem, zero-shot semantic segmentation makes use of large self-supervised vision-language models, allowing zero-shot transfer to unseen classes. In this work, we build a benchmark for Multi-domain Evaluation of Semantic Segmentation (MESS), which allows a holistic analysis of performance across a wide range of domain-specific datasets such as medicine, engineering, earth monitoring, biology, and agriculture. To do this, we reviewed 120 datasets, developed a taxonomy, and classified the datasets according to the developed taxonomy. We select a representative subset consisting of 22 datasets and propose it as the MESS benchmark. We evaluate eight recently published models on the proposed MESS benchmark and analyze characteristics for the performance of zero-shot transfer models. The toolkit is available at //github.com/blumenstiel/MESS.

Modeling and formally reasoning about distributed systems with faults is a challenging task. To address this problem, we propose the theory of Validating Labeled State transition and Message production systems (VLSMs). The theory of VLSMs provides a general approach to describing and verifying properties of distributed protocols whose executions are subject to faults, supporting a correct-by-construction system development methodology. The central focus of our investigation is equivocation, a mode of faulty behavior that we formally model, reason about, and then show how to detect from durable evidence that may be available locally to system components. Equivocating components exhibit behavior that is inconsistent with single-trace system executions, while also only interacting with other components by sending and receiving valid messages. Components of system are called validators for that system if their validity constraints validate that the messages they receive are producible by the system. Our main result shows that for systems of validators, the effect that Byzantine components can have on honest validators is precisely identical to the effect that equivocating components can have on non-equivocating validators. Therefore, for distributed systems of potentially faulty validators, replacing Byzantine components with equivocating components has no material analytical consequences, and forms the basis of a sound alternative foundation to Byzantine fault tolerance analysis. All of the results and examples in the paper have been formalised and checked in the Coq proof assistant.

When solving challenging problems, language models (LMs) are able to identify relevant information from long and complicated contexts. To study how LMs solve retrieval tasks in diverse situations, we introduce ORION, a collection of structured retrieval tasks spanning six domains, from text understanding to coding. Each task in ORION can be represented abstractly by a request (e.g. a question) that retrieves an attribute (e.g. the character name) from a context (e.g. a story). We apply causal analysis on 18 open-source language models with sizes ranging from 125 million to 70 billion parameters. We find that LMs internally decompose retrieval tasks in a modular way: middle layers at the last token position process the request, while late layers retrieve the correct entity from the context. After causally enforcing this decomposition, models are still able to solve the original task, preserving 70% of the original correct token probability in 98 of the 106 studied model-task pairs. We connect our macroscopic decomposition with a microscopic description by performing a fine-grained case study of a question-answering task on Pythia-2.8b. Building on our high-level understanding, we demonstrate a proof of concept application for scalable internal oversight of LMs to mitigate prompt-injection while requiring human supervision on only a single input. Our solution improves accuracy drastically (from 15.5% to 97.5% on Pythia-12b). This work presents evidence of a universal emergent modular processing of tasks across varied domains and models and is a pioneering effort in applying interpretability for scalable internal oversight of LMs.

The advent of large language models marks a revolutionary breakthrough in artificial intelligence. With the unprecedented scale of training and model parameters, the capability of large language models has been dramatically improved, leading to human-like performances in understanding, language synthesizing, and common-sense reasoning, etc. Such a major leap-forward in general AI capacity will change the pattern of how personalization is conducted. For one thing, it will reform the way of interaction between humans and personalization systems. Instead of being a passive medium of information filtering, large language models present the foundation for active user engagement. On top of such a new foundation, user requests can be proactively explored, and user's required information can be delivered in a natural and explainable way. For another thing, it will also considerably expand the scope of personalization, making it grow from the sole function of collecting personalized information to the compound function of providing personalized services. By leveraging large language models as general-purpose interface, the personalization systems may compile user requests into plans, calls the functions of external tools to execute the plans, and integrate the tools' outputs to complete the end-to-end personalization tasks. Today, large language models are still being developed, whereas the application in personalization is largely unexplored. Therefore, we consider it to be the right time to review the challenges in personalization and the opportunities to address them with LLMs. In particular, we dedicate this perspective paper to the discussion of the following aspects: the development and challenges for the existing personalization system, the newly emerged capabilities of large language models, and the potential ways of making use of large language models for personalization.

Current deep learning research is dominated by benchmark evaluation. A method is regarded as favorable if it empirically performs well on the dedicated test set. This mentality is seamlessly reflected in the resurfacing area of continual learning, where consecutively arriving sets of benchmark data are investigated. The core challenge is framed as protecting previously acquired representations from being catastrophically forgotten due to the iterative parameter updates. However, comparison of individual methods is nevertheless treated in isolation from real world application and typically judged by monitoring accumulated test set performance. The closed world assumption remains predominant. It is assumed that during deployment a model is guaranteed to encounter data that stems from the same distribution as used for training. This poses a massive challenge as neural networks are well known to provide overconfident false predictions on unknown instances and break down in the face of corrupted data. In this work we argue that notable lessons from open set recognition, the identification of statistically deviating data outside of the observed dataset, and the adjacent field of active learning, where data is incrementally queried such that the expected performance gain is maximized, are frequently overlooked in the deep learning era. Based on these forgotten lessons, we propose a consolidated view to bridge continual learning, active learning and open set recognition in deep neural networks. Our results show that this not only benefits each individual paradigm, but highlights the natural synergies in a common framework. We empirically demonstrate improvements when alleviating catastrophic forgetting, querying data in active learning, selecting task orders, while exhibiting robust open world application where previously proposed methods fail.

Substantial efforts have been devoted more recently to presenting various methods for object detection in optical remote sensing images. However, the current survey of datasets and deep learning based methods for object detection in optical remote sensing images is not adequate. Moreover, most of the existing datasets have some shortcomings, for example, the numbers of images and object categories are small scale, and the image diversity and variations are insufficient. These limitations greatly affect the development of deep learning based object detection methods. In the paper, we provide a comprehensive review of the recent deep learning based object detection progress in both the computer vision and earth observation communities. Then, we propose a large-scale, publicly available benchmark for object DetectIon in Optical Remote sensing images, which we name as DIOR. The dataset contains 23463 images and 192472 instances, covering 20 object classes. The proposed DIOR dataset 1) is large-scale on the object categories, on the object instance number, and on the total image number; 2) has a large range of object size variations, not only in terms of spatial resolutions, but also in the aspect of inter- and intra-class size variability across objects; 3) holds big variations as the images are obtained with different imaging conditions, weathers, seasons, and image quality; and 4) has high inter-class similarity and intra-class diversity. The proposed benchmark can help the researchers to develop and validate their data-driven methods. Finally, we evaluate several state-of-the-art approaches on our DIOR dataset to establish a baseline for future research.

Many natural language processing tasks solely rely on sparse dependencies between a few tokens in a sentence. Soft attention mechanisms show promising performance in modeling local/global dependencies by soft probabilities between every two tokens, but they are not effective and efficient when applied to long sentences. By contrast, hard attention mechanisms directly select a subset of tokens but are difficult and inefficient to train due to their combinatorial nature. In this paper, we integrate both soft and hard attention into one context fusion model, "reinforced self-attention (ReSA)", for the mutual benefit of each other. In ReSA, a hard attention trims a sequence for a soft self-attention to process, while the soft attention feeds reward signals back to facilitate the training of the hard one. For this purpose, we develop a novel hard attention called "reinforced sequence sampling (RSS)", selecting tokens in parallel and trained via policy gradient. Using two RSS modules, ReSA efficiently extracts the sparse dependencies between each pair of selected tokens. We finally propose an RNN/CNN-free sentence-encoding model, "reinforced self-attention network (ReSAN)", solely based on ReSA. It achieves state-of-the-art performance on both Stanford Natural Language Inference (SNLI) and Sentences Involving Compositional Knowledge (SICK) datasets.

Dialogue systems have attracted more and more attention. Recent advances on dialogue systems are overwhelmingly contributed by deep learning techniques, which have been employed to enhance a wide range of big data applications such as computer vision, natural language processing, and recommender systems. For dialogue systems, deep learning can leverage a massive amount of data to learn meaningful feature representations and response generation strategies, while requiring a minimum amount of hand-crafting. In this article, we give an overview to these recent advances on dialogue systems from various perspectives and discuss some possible research directions. In particular, we generally divide existing dialogue systems into task-oriented and non-task-oriented models, then detail how deep learning techniques help them with representative algorithms and finally discuss some appealing research directions that can bring the dialogue system research into a new frontier.

北京阿比特科技有限公司