亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Despite the increasing adoption of Field-Programmable Gate Arrays (FPGAs) in compute clouds, there remains a significant gap in programming tools and abstractions which can leverage network-connected, cloud-scale, multi-die FPGAs to generate accelerators with high frequency and throughput. To this end, we propose TAPA-CS, a task-parallel dataflow programming framework which automatically partitions and compiles a large design across a cluster of FPGAs with no additional user effort while achieving high frequency and throughput. TAPA-CS has three main contributions. First, it is an open-source framework which allows users to leverage virtually "unlimited" accelerator fabric, high-bandwidth memory (HBM), and on-chip memory, by abstracting away the underlying hardware. This reduces the user's programming burden to a logical one, enabling software developers and researchers with limited FPGA domain knowledge to deploy larger designs than possible earlier. Second, given as input a large design, TAPA-CS automatically partitions the design to map to multiple FPGAs, while ensuring congestion control, resource balancing, and overlapping of communication and computation. Third, TAPA-CS couples coarse-grained floorplanning with automated interconnect pipelining at the inter- and intra-FPGA levels to ensure high frequency. We have tested TAPA-CS on our multi-FPGA testbed where the FPGAs communicate through a high-speed 100Gbps Ethernet infrastructure. We have evaluated the performance and scalability of our tool on designs, including systolic-array based convolutional neural networks (CNNs), graph processing workloads such as page rank, stencil applications like the Dilate kernel, and K-nearest neighbors (KNN). TAPA-CS has the potential to accelerate development of increasingly complex and large designs on the low power and reconfigurable FPGAs.

相關內容

設計是對現有狀(zhuang)的一種重(zhong)新(xin)認(ren)識和打破重(zhong)組的過程,設計讓一切(qie)變得更美。

Visual understanding of the world goes beyond the semantics and flat structure of individual images. In this work, we aim to capture both the 3D structure and dynamics of real-world scenes from monocular real-world videos. Our Dynamic Scene Transformer (DyST) model leverages recent work in neural scene representation to learn a latent decomposition of monocular real-world videos into scene content, per-view scene dynamics, and camera pose. This separation is achieved through a novel co-training scheme on monocular videos and our new synthetic dataset DySO. DyST learns tangible latent representations for dynamic scenes that enable view generation with separate control over the camera and the content of the scene.

In recent advancements within the domain of Large Language Models (LLMs), there has been a notable emergence of agents capable of addressing Robotic Process Automation (RPA) challenges through enhanced cognitive capabilities and sophisticated reasoning. This development heralds a new era of scalability and human-like adaptability in goal attainment. In this context, we introduce AUTONODE (Autonomous User-interface Transformation through Online Neuro-graphic Operations and Deep Exploration). AUTONODE employs advanced neuro-graphical techniques to facilitate autonomous navigation and task execution on web interfaces, thereby obviating the necessity for predefined scripts or manual intervention. Our engine empowers agents to comprehend and implement complex workflows, adapting to dynamic web environments with unparalleled efficiency. Our methodology synergizes cognitive functionalities with robotic automation, endowing AUTONODE with the ability to learn from experience. We have integrated an exploratory module, DoRA (Discovery and mapping Operation for graph Retrieval Agent), which is instrumental in constructing a knowledge graph that the engine utilizes to optimize its actions and achieve objectives with minimal supervision. The versatility and efficacy of AUTONODE are demonstrated through a series of experiments, highlighting its proficiency in managing a diverse array of web-based tasks, ranging from data extraction to transaction processing.

Passivity is necessary for robots to fluidly collaborate and interact with humans physically. Nevertheless, due to the unconstrained nature of passivity-based impedance control laws, the robot is vulnerable to infeasible and unsafe configurations upon physical perturbations. In this paper, we propose a novel control architecture that allows a torque-controlled robot to guarantee safety constraints such as kinematic limits, self-collisions, external collisions and singularities and is passive only when feasible. This is achieved by constraining a dynamical system based impedance control law with a relaxed hierarchical control barrier function quadratic program subject to multiple concurrent, possibly contradicting, constraints. Joint space constraints are formulated from efficient data-driven self- and external C^2 collision boundary functions. We theoretically prove constraint satisfaction and show that the robot is passive when feasible. Our approach is validated in simulation and real robot experiments on a 7DoF Franka Research 3 manipulator.

With the advent and widespread deployment of Multimodal Large Language Models (MLLMs), the imperative to ensure their safety has become increasingly pronounced. However, with the integration of additional modalities, MLLMs are exposed to new vulnerabilities, rendering them prone to structured-based jailbreak attacks, where semantic content (e.g., "harmful text") has been injected into the images to mislead MLLMs. In this work, we aim to defend against such threats. Specifically, we propose \textbf{Ada}ptive \textbf{Shield} Prompting (\textbf{AdaShield}), which prepends inputs with defense prompts to defend MLLMs against structure-based jailbreak attacks without fine-tuning MLLMs or training additional modules (e.g., post-stage content detector). Initially, we present a manually designed static defense prompt, which thoroughly examines the image and instruction content step by step and specifies response methods to malicious queries. Furthermore, we introduce an adaptive auto-refinement framework, consisting of a target MLLM and a LLM-based defense prompt generator (Defender). These components collaboratively and iteratively communicate to generate a defense prompt. Extensive experiments on the popular structure-based jailbreak attacks and benign datasets show that our methods can consistently improve MLLMs' robustness against structure-based jailbreak attacks without compromising the model's general capabilities evaluated on standard benign tasks. Our code is available at //github.com/rain305f/AdaShield.

Controller Area Network (CAN) is an essential networking protocol that connects multiple electronic control units (ECUs) in a vehicle. However, CAN-based in-vehicle networks (IVNs) face security risks owing to the CAN mechanisms. An adversary can sabotage a vehicle by leveraging the security risks if they can access the CAN bus. Thus, recent actions and cybersecurity regulations (e.g., UNR 155) require carmakers to implement intrusion detection systems (IDSs) in their vehicles. The IDS should detect cyberattacks and provide additional information to analyze conducted attacks. Although many IDSs have been proposed, considerations regarding their feasibility and explainability remain lacking. This study proposes X-CANIDS, which is a novel IDS for CAN-based IVNs. X-CANIDS dissects the payloads in CAN messages into human-understandable signals using a CAN database. The signals improve the intrusion detection performance compared with the use of bit representations of raw payloads. These signals also enable an understanding of which signal or ECU is under attack. X-CANIDS can detect zero-day attacks because it does not require any labeled dataset in the training phase. We confirmed the feasibility of the proposed method through a benchmark test on an automotive-grade embedded device with a GPU. The results of this work will be valuable to carmakers and researchers considering the installation of in-vehicle IDSs for their vehicles.

In the wake of the surging tide of deep learning over the past decade, Automatic Speech Recognition (ASR) has garnered substantial attention, leading to the emergence of numerous publicly accessible ASR systems that are actively being integrated into our daily lives. Nonetheless, the impartial and replicable evaluation of these ASR systems encounters challenges due to various crucial subtleties. In this paper we introduce the SpeechColab Leaderboard, a general-purpose, open-source platform designed for ASR evaluation. With this platform: (i) We report a comprehensive benchmark, unveiling the current state-of-the-art panorama for ASR systems, covering both open-source models and industrial commercial services. (ii) We quantize how distinct nuances in the scoring pipeline influence the final benchmark outcomes. These include nuances related to capitalization, punctuation, interjection, contraction, synonym usage, compound words, etc. These issues have gained prominence in the context of the transition towards an End-to-End future. (iii) We propose a practical modification to the conventional Token-Error-Rate (TER) evaluation metric, with inspirations from Kolmogorov complexity and Normalized Information Distance (NID). This adaptation, called modified-TER (mTER), achieves proper normalization and symmetrical treatment of reference and hypothesis. By leveraging this platform as a large-scale testing ground, this study demonstrates the robustness and backward compatibility of mTER when compared to TER. The SpeechColab Leaderboard is accessible at //github.com/SpeechColab/Leaderboard

Recently, Self-Supervised Representation Learning (SSRL) has attracted much attention in the field of computer vision, speech, natural language processing (NLP), and recently, with other types of modalities, including time series from sensors. The popularity of self-supervised learning is driven by the fact that traditional models typically require a huge amount of well-annotated data for training. Acquiring annotated data can be a difficult and costly process. Self-supervised methods have been introduced to improve the efficiency of training data through discriminative pre-training of models using supervisory signals that have been freely obtained from the raw data. Unlike existing reviews of SSRL that have pre-dominately focused upon methods in the fields of CV or NLP for a single modality, we aim to provide the first comprehensive review of multimodal self-supervised learning methods for temporal data. To this end, we 1) provide a comprehensive categorization of existing SSRL methods, 2) introduce a generic pipeline by defining the key components of a SSRL framework, 3) compare existing models in terms of their objective function, network architecture and potential applications, and 4) review existing multimodal techniques in each category and various modalities. Finally, we present existing weaknesses and future opportunities. We believe our work develops a perspective on the requirements of SSRL in domains that utilise multimodal and/or temporal data

Point cloud-based large scale place recognition is fundamental for many applications like Simultaneous Localization and Mapping (SLAM). Although many models have been proposed and have achieved good performance by learning short-range local features, long-range contextual properties have often been neglected. Moreover, the model size has also become a bottleneck for their wide applications. To overcome these challenges, we propose a super light-weight network model termed SVT-Net for large scale place recognition. Specifically, on top of the highly efficient 3D Sparse Convolution (SP-Conv), an Atom-based Sparse Voxel Transformer (ASVT) and a Cluster-based Sparse Voxel Transformer (CSVT) are proposed to learn both short-range local features and long-range contextual features in this model. Consisting of ASVT and CSVT, SVT-Net can achieve state-of-the-art on benchmark datasets in terms of both accuracy and speed with a super-light model size (0.9M). Meanwhile, two simplified versions of SVT-Net are introduced, which also achieve state-of-the-art and further reduce the model size to 0.8M and 0.4M respectively.

Generative adversarial networks (GANs) have been extensively studied in the past few years. Arguably their most significant impact has been in the area of computer vision where great advances have been made in challenges such as plausible image generation, image-to-image translation, facial attribute manipulation and similar domains. Despite the significant successes achieved to date, applying GANs to real-world problems still poses significant challenges, three of which we focus on here. These are: (1) the generation of high quality images, (2) diversity of image generation, and (3) stable training. Focusing on the degree to which popular GAN technologies have made progress against these challenges, we provide a detailed review of the state of the art in GAN-related research in the published scientific literature. We further structure this review through a convenient taxonomy we have adopted based on variations in GAN architectures and loss functions. While several reviews for GANs have been presented to date, none have considered the status of this field based on their progress towards addressing practical challenges relevant to computer vision. Accordingly, we review and critically discuss the most popular architecture-variant, and loss-variant GANs, for tackling these challenges. Our objective is to provide an overview as well as a critical analysis of the status of GAN research in terms of relevant progress towards important computer vision application requirements. As we do this we also discuss the most compelling applications in computer vision in which GANs have demonstrated considerable success along with some suggestions for future research directions. Code related to GAN-variants studied in this work is summarized on //github.com/sheqi/GAN_Review.

The problem of Multiple Object Tracking (MOT) consists in following the trajectory of different objects in a sequence, usually a video. In recent years, with the rise of Deep Learning, the algorithms that provide a solution to this problem have benefited from the representational power of deep models. This paper provides a comprehensive survey on works that employ Deep Learning models to solve the task of MOT on single-camera videos. Four main steps in MOT algorithms are identified, and an in-depth review of how Deep Learning was employed in each one of these stages is presented. A complete experimental comparison of the presented works on the three MOTChallenge datasets is also provided, identifying a number of similarities among the top-performing methods and presenting some possible future research directions.

北京阿比特科技有限公司