Failure is common in clinical trials since the successful failures presented in negative results always indicate the ways that should not be taken. In this paper, we proposed an automated approach to extracting positive and negative clinical research results by introducing a PICOE (Population, Intervention, Comparation, Outcome, and Effect) framework to represent randomized controlled trials (RCT) reports, where E indicates the effect between a specific I and O. We developed a pipeline to extract and assign the corresponding statistical effect to a specific I-O pair from natural language RCT reports. The extraction models achieved a high degree of accuracy for ICO and E descriptive words extraction through two rounds of training. By defining a threshold of p-value, we find in all Covid-19 related intervention-outcomes pairs with statistical tests, negative results account for nearly 40%. We believe that this observation is noteworthy since they are extracted from the published literature, in which there is an inherent risk of reporting bias, preferring to report positive results rather than negative results. We provided a tool to systematically understand the current level of clinical evidence by distinguishing negative results from the positive results.
Structure learning is a core problem in AI central to the fields of neuro-symbolic AI and statistical relational learning. It consists in automatically learning a logical theory from data. The basis for structure learning is mining repeating patterns in the data, known as structural motifs. Finding these patterns reduces the exponential search space and therefore guides the learning of formulas. Despite the importance of motif learning, it is still not well understood. We present the first principled approach for mining structural motifs in lifted graphical models, languages that blend first-order logic with probabilistic models, which uses a stochastic process to measure the similarity of entities in the data. Our first contribution is an algorithm, which depends on two intuitive hyperparameters: one controlling the uncertainty in the entity similarity measure, and one controlling the softness of the resulting rules. Our second contribution is a preprocessing step where we perform hierarchical clustering on the data to reduce the search space to the most relevant data. Our third contribution is to introduce an O(n ln n) (in the size of the entities in the data) algorithm for clustering structurally-related data. We evaluate our approach using standard benchmarks and show that we outperform state-of-the-art structure learning approaches by up to 6% in terms of accuracy and up to 80% in terms of runtime.
With the advance of language models, privacy protection is receiving more attention. Training data extraction is therefore of great importance, as it can serve as a potential tool to assess privacy leakage. However, due to the difficulty of this task, most of the existing methods are proof-of-concept and still not effective enough. In this paper, we investigate and benchmark tricks for improving training data extraction using a publicly available dataset. Because most existing extraction methods use a pipeline of generating-then-ranking, i.e., generating text candidates as potential training data and then ranking them based on specific criteria, our research focuses on the tricks for both text generation (e.g., sampling strategy) and text ranking (e.g., token-level criteria). The experimental results show that several previously overlooked tricks can be crucial to the success of training data extraction. Based on the GPT-Neo 1.3B evaluation results, our proposed tricks outperform the baseline by a large margin in most cases, providing a much stronger baseline for future research.
This study aims to demonstrate the methods for detecting negations in a sentence by uniquely evaluating the lexical structure of the text via word sense disambiguation. Additionally, the proposed method examined all the unique features of the related expressions within a text to resolve the contextual usage of the sentence and the effect of negation on sentiment analysis. The application of popular expression detectors skips this important step, thereby neglecting the root words caught in the web of negation, and making text classification difficult for machine learning and sentiment analysis. This study adopts the Natural Language Processing (NLP) approach to discover and antonimize words that were negated for better accuracy in text classification. This method acts as a lens that reads through a given word sequence using a knowledge base provided by an NLP library called WordHoard in order to detect negation signals. Early results show that our initial analysis improved traditional sentiment analysis that sometimes neglects word negations or assigns an inverse polarity score. The SentiWordNet analyzer was improved by 35%, the Vader analyzer by 20% and the TextBlob analyzer by 6%.
A new local watermarking method based on histogram shifting has been proposed in this paper to deal with various signal processing attacks (e.g. median filtering, JPEG compression and Gaussian noise addition) and geometric attacks (e.g. rotation, scaling and cropping). A feature detector is used to select local areas for embedding. Then stationary wavelet transform (SWT) is applied on each local area for denoising by setting the corresponding diagonal coefficients to zero. With the implementation of histogram shifting, the watermark is embedded into denoised local areas. Meanwhile, a secret key is used in the embedding process which ensures the security that the watermark cannot be easily hacked. After the embedding process, the SWT diagonal coefficients are used to reconstruct the watermarked image. With the proposed watermarking method, we can achieve higher image quality and less bit error rate (BER) in the decoding process even after some attacks. Compared with global watermarking methods, the proposed watermarking scheme based on local histogram shifting has the advantages of higher security and larger capacity. The experimental results show the better image quality as well as lower BER compared with the state-of-art watermarking methods.
Large generative AI models (LGAIMs), such as ChatGPT or Stable Diffusion, are rapidly transforming the way we communicate, illustrate, and create. However, AI regulation, in the EU and beyond, has primarily focused on conventional AI models, not LGAIMs. This paper will situate these new generative models in the current debate on trustworthy AI regulation, and ask how the law can be tailored to their capabilities. After laying technical foundations, the legal part of the paper proceeds in four steps, covering (1) direct regulation, (2) data protection, (3) content moderation, and (4) policy proposals. It suggests a novel terminology to capture the AI value chain in LGAIM settings by differentiating between LGAIM developers, deployers, professional and non-professional users, as well as recipients of LGAIM output. We tailor regulatory duties to these different actors along the value chain and suggest four strategies to ensure that LGAIMs are trustworthy and deployed for the benefit of society at large. Rules in the AI Act and other direct regulation must match the specificities of pre-trained models. In particular, regulation should focus on concrete high-risk applications, and not the pre-trained model itself, and should include (i) obligations regarding transparency and (ii) risk management. Non-discrimination provisions (iii) may, however, apply to LGAIM developers. Lastly, (iv) the core of the DSA content moderation rules should be expanded to cover LGAIMs. This includes notice and action mechanisms, and trusted flaggers. In all areas, regulators and lawmakers need to act fast to keep track with the dynamics of ChatGPT et al.
Federated learning methods, that is, methods that perform model training using data situated across different sources, whilst simultaneously not having the data leave their original source, are of increasing interest in a number of fields. However, despite this interest, the classes of models for which easily-applicable and sufficiently general approaches are available is limited, excluding many structured probabilistic models. We present a general yet elegant resolution to the aforementioned issue. The approach is based on adopting structured variational inference, an approach widely used in Bayesian machine learning, to the federated setting. Additionally, a communication-efficient variant analogous to the canonical FedAvg algorithm is explored. The effectiveness of the proposed algorithms are demonstrated, and their performance is compared on Bayesian multinomial regression, topic modelling, and mixed model examples.
Privacy auditing techniques for differentially private (DP) algorithms are useful for estimating the privacy loss to compare against analytical bounds, or empirically measure privacy in settings where known analytical bounds on the DP loss are not tight. However, existing privacy auditing techniques usually make strong assumptions on the adversary (e.g., knowledge of intermediate model iterates or the training data distribution), are tailored to specific tasks and model architectures, and require retraining the model many times (typically on the order of thousands). These shortcomings make deploying such techniques at scale difficult in practice, especially in federated settings where model training can take days or weeks. In this work, we present a novel "one-shot" approach that can systematically address these challenges, allowing efficient auditing or estimation of the privacy loss of a model during the same, single training run used to fit model parameters. Our privacy auditing method for federated learning does not require a priori knowledge about the model architecture or task. We show that our method provides provably correct estimates for privacy loss under the Gaussian mechanism, and we demonstrate its performance on a well-established FL benchmark dataset under several adversarial models.
Large language models have been demonstrated to be valuable in different fields. ChatGPT, developed by OpenAI, has been trained using massive amounts of data and simulates human conversation by comprehending context and generating appropriate responses. It has garnered significant attention due to its ability to effectively answer a broad range of human inquiries, with fluent and comprehensive answers surpassing prior public chatbots in both security and usefulness. However, a comprehensive analysis of ChatGPT's failures is lacking, which is the focus of this study. Ten categories of failures, including reasoning, factual errors, math, coding, and bias, are presented and discussed. The risks, limitations, and societal implications of ChatGPT are also highlighted. The goal of this study is to assist researchers and developers in enhancing future language models and chatbots.
Knowledge is a formal way of understanding the world, providing a human-level cognition and intelligence for the next-generation artificial intelligence (AI). One of the representations of knowledge is the structural relations between entities. An effective way to automatically acquire this important knowledge, called Relation Extraction (RE), a sub-task of information extraction, plays a vital role in Natural Language Processing (NLP). Its purpose is to identify semantic relations between entities from natural language text. To date, there are several studies for RE in previous works, which have documented these techniques based on Deep Neural Networks (DNNs) become a prevailing technique in this research. Especially, the supervised and distant supervision methods based on DNNs are the most popular and reliable solutions for RE. This article 1)introduces some general concepts, and further 2)gives a comprehensive overview of DNNs in RE from two points of view: supervised RE, which attempts to improve the standard RE systems, and distant supervision RE, which adopts DNNs to design the sentence encoder and the de-noise method. We further 3)cover some novel methods and describe some recent trends and discuss possible future research directions for this task.
Clinical Named Entity Recognition (CNER) aims to identify and classify clinical terms such as diseases, symptoms, treatments, exams, and body parts in electronic health records, which is a fundamental and crucial task for clinical and translational research. In recent years, deep neural networks have achieved significant success in named entity recognition and many other Natural Language Processing (NLP) tasks. Most of these algorithms are trained end to end, and can automatically learn features from large scale labeled datasets. However, these data-driven methods typically lack the capability of processing rare or unseen entities. Previous statistical methods and feature engineering practice have demonstrated that human knowledge can provide valuable information for handling rare and unseen cases. In this paper, we address the problem by incorporating dictionaries into deep neural networks for the Chinese CNER task. Two different architectures that extend the Bi-directional Long Short-Term Memory (Bi-LSTM) neural network and five different feature representation schemes are proposed to handle the task. Computational results on the CCKS-2017 Task 2 benchmark dataset show that the proposed method achieves the highly competitive performance compared with the state-of-the-art deep learning methods.