亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Sensor network virtualization is a promising paradigm to move away from highlycustomized, application-specific wireless sensor networks deployment by opening up to the possibility of dynamically assigning general purpose physical resources to multiple stakeholder applications. In this field, this paper introduces an optimization framework to perform the allocation of physical shared resources of wireless sensor networks to multiple requesting applications. The proposed optimization framework aims at maximizing the total number of applications which can share a common physical network, while accounting for the distinguishing characteristics and limitations of the wireless sensor environment (limited storage, limited processing power, limited bandwidth, tight energy consumption requirements). Due to the complexity of the optimization problem, a heuristic algorithm is also proposed. The proposed framework is finally applied to realistic network topologies to provide a detailed performance evaluation and to assess the gain involved in letting multiple applications share a common physical network with respect to one-application, one-network vertical design approaches.

相關內容

Networking:IFIP International Conferences on Networking。 Explanation:國(guo)際網絡會議。 Publisher:IFIP。 SIT:

Turning pass-through network architectures into iterative ones, which use their own output as input, is a well-known approach for boosting performance. In this paper, we argue that such architectures offer an additional benefit: The convergence rate of their successive outputs is highly correlated with the accuracy of the value to which they converge. Thus, we can use the convergence rate as a useful proxy for uncertainty. This results in an approach to uncertainty estimation that provides state-of-the-art estimates at a much lower computational cost than techniques like Ensembles, and without requiring any modifications to the original iterative model. We demonstrate its practical value by embedding it in two application domains: road detection in aerial images and the estimation of aerodynamic properties of 2D and 3D shapes.

In cellular networks, it can become necessary for authorities to physically locate user devices for tracking criminals or illegal devices. While cellular operators can provide authorities with cell information the device is camping on, fine-grained localization is still required. Therefore, the authorized agents trace the device by monitoring its uplink signals. However, tracking the uplink signal source without its cooperation is challenging even for operators and authorities. Particularly, three challenges remain for fine-grained localization: i) localization works only if devices generate enough uplink traffic reliably over time, ii) the target device might generate its uplink traffic with significantly low power, and iii) cellular repeater may add too much noise to true uplink signals. While these challenges present practical hurdles for localization, they have been overlooked in prior works. In this work, we investigate the impact of these real-world challenges on cellular localization and propose an Uncooperative Multiangulation Attack (UMA) that addresses these challenges. UMA can 1) force a target device to transmit traffic continuously, 2) boost the target's signal strength to the maximum, and 3) uniquely distinguish traffic from the target and the repeaters. Notably, the UMA technique works without privilege on cellular operators or user devices, which makes it operate on any LTE network. Our evaluations show that UMA effectively resolves the challenges in real-world environments when devices are not cooperative for localization. Our approach exploits the current cellular design vulnerabilities, which we have responsibly disclosed to GSMA.

Hybrid non-orthogonal multiple access (H-NOMA) has recently received significant attention as a general framework of multiple access, where both conventional orthogonal multiple access (OMA) and pure NOMA are its special cases. This paper focuses on the application of H-NOMA to ambient Internet of Things (IoT) with energy-constrained devices, where a new backscatter communication (BackCom) assisted H-NOMA uplink scheme is developed. Resource allocation for H-NOMA uplink transmission is also considered, where an overall power minimization problem is formulated. Insightful understandings for the key features of BackCom assisted H-NOMA and its difference from conventional H-NOMA are illustrated by developing analytical results for the two-user special case. For the general multi-user scenario, two algorithms, one based on the branch-bound (BB) principle and the other based on successive convex approximation (SCA), are developed to realize different tradeoffs between the system performance and complexity. The numerical results are also provided to verify the accuracy of the developed analytical results and demonstrate the performance gain of H-NOMA over OMA.

To accommodate new applications such as extended reality, fully autonomous vehicular networks and the metaverse, next generation wireless networks are going to be subject to much more stringent performance requirements than the fifth-generation (5G) in terms of data rates, reliability, latency, and connectivity. It is thus necessary to develop next generation advanced transceiver (NGAT) technologies for efficient signal transmission and reception. In this tutorial, we explore the evolution of NGAT from three different perspectives. Specifically, we first provide an overview of new-field NGAT technology, which shifts from conventional far-field channel models to new near-field channel models. Then, three new-form NGAT technologies and their design challenges are presented, including reconfigurable intelligent surfaces, flexible antennas, and holographic multi-input multi-output (MIMO) systems. Subsequently, we discuss recent advances in semantic-aware NGAT technologies, which can utilize new metrics for advanced transceiver designs. Finally, we point out other promising transceiver technologies for future research.

Scalable load balancing algorithms are of great interest in cloud networks and data centers, necessitating the use of tractable techniques to compute optimal load balancing policies for good performance. However, most existing scalable techniques, especially asymptotically scaling methods based on mean field theory, have not been able to model large queueing networks with strong locality. Meanwhile, general multi-agent reinforcement learning techniques can be hard to scale and usually lack a theoretical foundation. In this work, we address this challenge by leveraging recent advances in sparse mean field theory to learn a near-optimal load balancing policy in sparsely connected queueing networks in a tractable manner, which may be preferable to global approaches in terms of wireless communication overhead. Importantly, we obtain a general load balancing framework for a large class of sparse bounded-degree wireless topologies. By formulating a novel mean field control problem in the context of graphs with bounded degree, we reduce the otherwise difficult multi-agent problem to a single-agent problem. Theoretically, the approach is justified by approximation guarantees. Empirically, the proposed methodology performs well on several realistic and scalable wireless network topologies as compared to a number of well-known load balancing heuristics and existing scalable multi-agent reinforcement learning methods.

This work addresses the buyer's inspection paradox for information markets. The paradox is that buyers need to access information to determine its value, while sellers need to limit access to prevent theft. To study this, we introduce an open-source simulated digital marketplace where intelligent agents, powered by language models, buy and sell information on behalf of external participants. The central mechanism enabling this marketplace is the agents' dual capabilities: they not only have the capacity to assess the quality of privileged information but also come equipped with the ability to forget. This ability to induce amnesia allows vendors to grant temporary access to proprietary information, significantly reducing the risk of unauthorized retention while enabling agents to accurately gauge the information's relevance to specific queries or tasks. To perform well, agents must make rational decisions, strategically explore the marketplace through generated sub-queries, and synthesize answers from purchased information. Concretely, our experiments (a) uncover biases in language models leading to irrational behavior and evaluate techniques to mitigate these biases, (b) investigate how price affects demand in the context of informational goods, and (c) show that inspection and higher budgets both lead to higher quality outcomes.

Geometric deep learning (GDL), which is based on neural network architectures that incorporate and process symmetry information, has emerged as a recent paradigm in artificial intelligence. GDL bears particular promise in molecular modeling applications, in which various molecular representations with different symmetry properties and levels of abstraction exist. This review provides a structured and harmonized overview of molecular GDL, highlighting its applications in drug discovery, chemical synthesis prediction, and quantum chemistry. Emphasis is placed on the relevance of the learned molecular features and their complementarity to well-established molecular descriptors. This review provides an overview of current challenges and opportunities, and presents a forecast of the future of GDL for molecular sciences.

The notion of "in-domain data" in NLP is often over-simplistic and vague, as textual data varies in many nuanced linguistic aspects such as topic, style or level of formality. In addition, domain labels are many times unavailable, making it challenging to build domain-specific systems. We show that massive pre-trained language models implicitly learn sentence representations that cluster by domains without supervision -- suggesting a simple data-driven definition of domains in textual data. We harness this property and propose domain data selection methods based on such models, which require only a small set of in-domain monolingual data. We evaluate our data selection methods for neural machine translation across five diverse domains, where they outperform an established approach as measured by both BLEU and by precision and recall of sentence selection with respect to an oracle.

Graph neural networks (GNNs) are a popular class of machine learning models whose major advantage is their ability to incorporate a sparse and discrete dependency structure between data points. Unfortunately, GNNs can only be used when such a graph-structure is available. In practice, however, real-world graphs are often noisy and incomplete or might not be available at all. With this work, we propose to jointly learn the graph structure and the parameters of graph convolutional networks (GCNs) by approximately solving a bilevel program that learns a discrete probability distribution on the edges of the graph. This allows one to apply GCNs not only in scenarios where the given graph is incomplete or corrupted but also in those where a graph is not available. We conduct a series of experiments that analyze the behavior of the proposed method and demonstrate that it outperforms related methods by a significant margin.

Deep neural networks (DNNs) have been found to be vulnerable to adversarial examples resulting from adding small-magnitude perturbations to inputs. Such adversarial examples can mislead DNNs to produce adversary-selected results. Different attack strategies have been proposed to generate adversarial examples, but how to produce them with high perceptual quality and more efficiently requires more research efforts. In this paper, we propose AdvGAN to generate adversarial examples with generative adversarial networks (GANs), which can learn and approximate the distribution of original instances. For AdvGAN, once the generator is trained, it can generate adversarial perturbations efficiently for any instance, so as to potentially accelerate adversarial training as defenses. We apply AdvGAN in both semi-whitebox and black-box attack settings. In semi-whitebox attacks, there is no need to access the original target model after the generator is trained, in contrast to traditional white-box attacks. In black-box attacks, we dynamically train a distilled model for the black-box model and optimize the generator accordingly. Adversarial examples generated by AdvGAN on different target models have high attack success rate under state-of-the-art defenses compared to other attacks. Our attack has placed the first with 92.76% accuracy on a public MNIST black-box attack challenge.

北京阿比特科技有限公司