亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

This paper focuses on spatial time-optimal motion planning, a generalization of the exact time-optimal path following problem that allows the system to plan within a predefined space. In contrast to state-of-the-art methods, we drop the assumption that a collision-free geometric reference is given. Instead, we present a two-stage motion planning method that solely relies on a goal location and a geometric representation of the environment to compute a time-optimal trajectory that is compliant with system dynamics and constraints. To do so, the proposed scheme first computes an obstacle-free Pythagorean Hodograph parametric spline, and second solves a spatially reformulated minimum-time optimization problem. The spline obtained in the first stage is not a geometric reference, but an extension of the environment representation, and thus, time-optimality of the solution is guaranteed. The efficacy of the proposed approach is benchmarked by a known planar example and validated in a more complex spatial system, illustrating its versatility and applicability.

相關內容

This paper focuses on the problem of semi-supervised domain adaptation for time-series forecasting, which is underexplored in literatures, despite being often encountered in practice. Existing methods on time-series domain adaptation mainly follow the paradigm designed for the static data, which cannot handle domain-specific complex conditional dependencies raised by data offset, time lags, and variant data distributions. In order to address these challenges, we analyze variational conditional dependencies in time-series data and find that the causal structures are usually stable among domains, and further raise the causal conditional shift assumption. Enlightened by this assumption, we consider the causal generation process for time-series data and propose an end-to-end model for the semi-supervised domain adaptation problem on time-series forecasting. Our method can not only discover the Granger-Causal structures among cross-domain data but also address the cross-domain time-series forecasting problem with accurate and interpretable predicted results. We further theoretically analyze the superiority of the proposed method, where the generalization error on the target domain is bounded by the empirical risks and by the discrepancy between the causal structures from different domains. Experimental results on both synthetic and real data demonstrate the effectiveness of our method for the semi-supervised domain adaptation method on time-series forecasting.

With the rapid growth of information, recommender systems have become integral for providing personalized suggestions and overcoming information overload. However, their practical deployment often encounters "dirty" data, where noise or malicious information can lead to abnormal recommendations. Research on improving recommender systems' robustness against such dirty data has thus gained significant attention. This survey provides a comprehensive review of recent work on recommender systems' robustness. We first present a taxonomy to organize current techniques for withstanding malicious attacks and natural noise. We then explore state-of-the-art methods in each category, including fraudster detection, adversarial training, certifiable robust training against malicious attacks, and regularization, purification, self-supervised learning against natural noise. Additionally, we summarize evaluation metrics and common datasets used to assess robustness. We discuss robustness across varying recommendation scenarios and its interplay with other properties like accuracy, interpretability, privacy, and fairness. Finally, we delve into open issues and future research directions in this emerging field. Our goal is to equip readers with a holistic understanding of robust recommender systems and spotlight pathways for future research and development.

The effective construction of an Algorithmic Trading (AT) strategy often relies on market simulators, which remains challenging due to existing methods' inability to adapt to the sequential and dynamic nature of trading activities. This work fills this gap by proposing a metric to quantify market discrepancy. This metric measures the difference between a causal effect from underlying market unique characteristics and it is evaluated through the interaction between the AT agent and the market. Most importantly, we introduce Algorithmic Trading-guided Market Simulation (ATMS) by optimizing our proposed metric. Inspired by SeqGAN, ATMS formulates the simulator as a stochastic policy in reinforcement learning (RL) to account for the sequential nature of trading. Moreover, ATMS utilizes the policy gradient update to bypass differentiating the proposed metric, which involves non-differentiable operations such as order deletion from the market. Through extensive experiments on semi-real market data, we demonstrate the effectiveness of our metric and show that ATMS generates market data with improved similarity to reality compared to the state-of-the-art conditional Wasserstein Generative Adversarial Network (cWGAN) approach. Furthermore, ATMS produces market data with more balanced BUY and SELL volumes, mitigating the bias of the cWGAN baseline approach, where a simple strategy can exploit the BUY/SELL imbalance for profit.

Headline generation, a key task in abstractive summarization, strives to condense a full-length article into a succinct, single line of text. Notably, while contemporary encoder-decoder models excel based on the ROUGE metric, they often falter when it comes to the precise generation of numerals in headlines. We identify the lack of datasets providing fine-grained annotations for accurate numeral generation as a major roadblock. To address this, we introduce a new dataset, the NumHG, and provide over 27,000 annotated numeral-rich news articles for detailed investigation. Further, we evaluate five well-performing models from previous headline generation tasks using human evaluation in terms of numerical accuracy, reasonableness, and readability. Our study reveals a need for improvement in numerical accuracy, demonstrating the potential of the NumHG dataset to drive progress in number-focused headline generation and stimulate further discussions in numeral-focused text generation.

The study of network robustness is a critical tool in the characterization and sense making of complex interconnected systems such as infrastructure, communication and social networks. While significant research has been conducted in all of these areas, gaps in the surveying literature still exist. Answers to key questions are currently scattered across multiple scientific fields and numerous papers. In this survey, we distill key findings across numerous domains and provide researchers crucial access to important information by--(1) summarizing and comparing recent and classical graph robustness measures; (2) exploring which robustness measures are most applicable to different categories of networks (e.g., social, infrastructure; (3) reviewing common network attack strategies, and summarizing which attacks are most effective across different network topologies; and (4) extensive discussion on selecting defense techniques to mitigate attacks across a variety of networks. This survey guides researchers and practitioners in navigating the expansive field of network robustness, while summarizing answers to key questions. We conclude by highlighting current research directions and open problems.

Semantic, instance, and panoptic segmentations have been addressed using different and specialized frameworks despite their underlying connections. This paper presents a unified, simple, and effective framework for these essentially similar tasks. The framework, named K-Net, segments both instances and semantic categories consistently by a group of learnable kernels, where each kernel is responsible for generating a mask for either a potential instance or a stuff class. To remedy the difficulties of distinguishing various instances, we propose a kernel update strategy that enables each kernel dynamic and conditional on its meaningful group in the input image. K-Net can be trained in an end-to-end manner with bipartite matching, and its training and inference are naturally NMS-free and box-free. Without bells and whistles, K-Net surpasses all previous published state-of-the-art single-model results of panoptic segmentation on MS COCO test-dev split and semantic segmentation on ADE20K val split with 55.2% PQ and 54.3% mIoU, respectively. Its instance segmentation performance is also on par with Cascade Mask R-CNN on MS COCO with 60%-90% faster inference speeds. Code and models will be released at //github.com/ZwwWayne/K-Net/.

The design of deep graph models still remains to be investigated and the crucial part is how to explore and exploit the knowledge from different hops of neighbors in an efficient way. In this paper, we propose a novel RNN-like deep graph neural network architecture by incorporating AdaBoost into the computation of network; and the proposed graph convolutional network called AdaGCN~(AdaBoosting Graph Convolutional Network) has the ability to efficiently extract knowledge from high-order neighbors and integrate knowledge from different hops of neighbors into the network in an AdaBoost way. We also present the architectural difference between AdaGCN and existing graph convolutional methods to show the benefits of our proposal. Finally, extensive experiments demonstrate the state-of-the-art prediction performance and the computational advantage of our approach AdaGCN.

Graph convolutional networks (GCNs) have recently become one of the most powerful tools for graph analytics tasks in numerous applications, ranging from social networks and natural language processing to bioinformatics and chemoinformatics, thanks to their ability to capture the complex relationships between concepts. At present, the vast majority of GCNs use a neighborhood aggregation framework to learn a continuous and compact vector, then performing a pooling operation to generalize graph embedding for the classification task. These approaches have two disadvantages in the graph classification task: (1)when only the largest sub-graph structure ($k$-hop neighbor) is used for neighborhood aggregation, a large amount of early-stage information is lost during the graph convolution step; (2) simple average/sum pooling or max pooling utilized, which loses the characteristics of each node and the topology between nodes. In this paper, we propose a novel framework called, dual attention graph convolutional networks (DAGCN) to address these problems. DAGCN automatically learns the importance of neighbors at different hops using a novel attention graph convolution layer, and then employs a second attention component, a self-attention pooling layer, to generalize the graph representation from the various aspects of a matrix graph embedding. The dual attention network is trained in an end-to-end manner for the graph classification task. We compare our model with state-of-the-art graph kernels and other deep learning methods. The experimental results show that our framework not only outperforms other baselines but also achieves a better rate of convergence.

We present MMKG, a collection of three knowledge graphs that contain both numerical features and (links to) images for all entities as well as entity alignments between pairs of KGs. Therefore, multi-relational link prediction and entity matching communities can benefit from this resource. We believe this data set has the potential to facilitate the development of novel multi-modal learning approaches for knowledge graphs.We validate the utility ofMMKG in the sameAs link prediction task with an extensive set of experiments. These experiments show that the task at hand benefits from learning of multiple feature types.

This paper describes a general framework for learning Higher-Order Network Embeddings (HONE) from graph data based on network motifs. The HONE framework is highly expressive and flexible with many interchangeable components. The experimental results demonstrate the effectiveness of learning higher-order network representations. In all cases, HONE outperforms recent embedding methods that are unable to capture higher-order structures with a mean relative gain in AUC of $19\%$ (and up to $75\%$ gain) across a wide variety of networks and embedding methods.

北京阿比特科技有限公司