亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We study a cache network in which intermediate nodes equipped with caches can serve requests. We model the problem of jointly optimizing caching and routing decisions with link capacity constraints over an arbitrary network topology. This problem can be formulated as a continuous diminishing-returns (DR) submodular maximization problem under multiple continuous DR-supermodular constraints, and is NP-hard. We propose a poly-time alternating primal-dual heuristic algorithm, in which primal steps produce solutions within $1-\frac{1}{e}$ approximation factor from the optimal. Through extensive experiments, we demonstrate that our proposed algorithm significantly outperforms competitors.

相關內容

讓 iOS 8 和 OS X Yosemite 無縫切換的一個新特性。 > Apple products have always been designed to work together beautifully. But now they may really surprise you. With iOS 8 and OS X Yosemite, you’ll be able to do more wonderful things than ever before.

Source:

Based on the mathematical arguments formulated within the Multifractal Detrended Fluctuation Analysis (MFDFA) approach it is shown that in the uncorrelated time series from the Gaussian basin of attraction the effects resembling multifractality asymptotically disappear for positive moments when the length of time series increases. A hint is given that this applies to the negative moments as well and extends to the L\'evy stable regime of fluctuations. The related effects are also illustrated and confirmed by numerical simulations. This documents that the genuine multifractality in time series may only result from the long-range temporal correlations and the fatter distribution tails of fluctuations may broaden the width of singularity spectrum only when such correlations are present. The frequently asked question of what makes multifractality in time series - temporal correlations or broad distribution tails - is thus ill posed. In the absence of correlations only the bifractal or monofractal cases are possible. The former corresponds to the L\'evy stable regime of fluctuations while the latter to the ones belonging to the Gaussian basin of attraction in the sense of the Central Limit Theorem.

It might be inadequate for the line search technique for Newton's method to use only one floating point number. A column vector of the same size as the gradient might be better than a mere float number to accelerate each of the gradient elements with different rates. Moreover, a square matrix of the same order as the Hessian matrix might be helpful to correct the Hessian matrix. Chiang applied something between a column vector and a square matrix, namely a diagonal matrix, to accelerate the gradient and further proposed a faster gradient variant called quadratic gradient. In this paper, we present a new way to build a new version of the quadratic gradient. This new quadratic gradient doesn't satisfy the convergence conditions of the fixed Hessian Newton's method. However, experimental results show that it sometimes has a better performance than the original one in convergence rate. Also, Chiang speculates that there might be a relation between the Hessian matrix and the learning rate for the first-order gradient descent method. We prove that the floating number $\frac{1}{\epsilon + \max \{| \lambda_i | \}}$ can be a good learning rate of the gradient methods, where $\epsilon$ is a number to avoid division by zero and $\lambda_i$ the eigenvalues of the Hessian matrix.

This paper studies an infinite horizon optimal control problem for discrete-time linear system and quadratic criteria, both with random parameters which are independent and identically distributed with respect to time. In this general setting, we apply the policy gradient method, a reinforcement learning technique, to search for the optimal control without requiring knowledge of statistical information of the parameters. We investigate the sub-Gaussianity of the state process and establish global linear convergence guarantee for this approach based on assumptions that are weaker and easier to verify compared to existing results. Numerical experiments are presented to illustrate our result.

Yang et al. (2023) recently addressed the open problem of solving Variational Inequalities (VIs) with equality and inequality constraints through a first-order gradient method. However, the proposed primal-dual method called ACVI is applicable when we can compute analytic solutions of its subproblems; thus, the general case remains an open problem. In this paper, we adopt a warm-starting technique where we solve the subproblems approximately at each iteration and initialize the variables with the approximate solution found at the previous iteration. We prove its convergence and show that the gap function of the last iterate of this inexact-ACVI method decreases at a rate of $\mathcal{O}(\frac{1}{\sqrt{K}})$ when the operator is $L$-Lipschitz and monotone, provided that the errors decrease at appropriate rates. Interestingly, we show that often in numerical experiments, this technique converges faster than its exact counterpart. Furthermore, for the cases when the inequality constraints are simple, we propose a variant of ACVI named P-ACVI and prove its convergence for the same setting. We further demonstrate the efficacy of the proposed methods through numerous experiments. We also relax the assumptions in Yang et al., yielding, to our knowledge, the first convergence result that does not rely on the assumption that the operator is $L$-Lipschitz. Our source code is provided at $\texttt{//github.com/mpagli/Revisiting-ACVI}$.

Dynamic Time Warping (DTW) is a popular time series distance measure that aligns the points in two series with one another. These alignments support warping of the time dimension to allow for processes that unfold at differing rates. The distance is the minimum sum of costs of the resulting alignments over any allowable warping of the time dimension. The cost of an alignment of two points is a function of the difference in the values of those points. The original cost function was the absolute value of this difference. Other cost functions have been proposed. A popular alternative is the square of the difference. However, to our knowledge, this is the first investigation of both the relative impacts of using different cost functions and the potential to tune cost functions to different tasks. We do so in this paper by using a tunable cost function {\lambda}{\gamma} with parameter {\gamma}. We show that higher values of {\gamma} place greater weight on larger pairwise differences, while lower values place greater weight on smaller pairwise differences. We demonstrate that training {\gamma} significantly improves the accuracy of both the DTW nearest neighbor and Proximity Forest classifiers.

While decades of theoretical research have led to the invention of several classes of error-correction codes, the design of such codes is an extremely challenging task, mostly driven by human ingenuity. Recent studies demonstrate that such designs can be effectively automated and accelerated via tools from machine learning (ML), thus enabling ML-driven classes of error-correction codes with promising performance gains compared to classical designs. A fundamental challenge, however, is that it is prohibitively complex, if not impossible, to design and train fully ML-driven encoder and decoder pairs for large code dimensions. In this paper, we propose Product Autoencoder (ProductAE) -- a computationally-efficient family of deep learning driven (encoder, decoder) pairs -- aimed at enabling the training of relatively large codes (both encoder and decoder) with a manageable training complexity. We build upon ideas from classical product codes and propose constructing large neural codes using smaller code components. ProductAE boils down the complex problem of training the encoder and decoder for a large code dimension $k$ and blocklength $n$ to less-complex sub-problems of training encoders and decoders for smaller dimensions and blocklengths. Our training results show successful training of ProductAEs of dimensions as large as $k = 300$ bits with meaningful performance gains compared to state-of-the-art classical and neural designs. Moreover, we demonstrate excellent robustness and adaptivity of ProductAEs to channel models different than the ones used for training.

In this work, we adopt Wyner common information framework for unsupervised multi-view representation learning. Within this framework, we propose two novel formulations that enable the development of computational efficient solvers based on the alternating minimization principle. The first formulation, referred to as the {\em variational form}, enjoys a linearly growing complexity with the number of views and is based on a variational-inference tight surrogate bound coupled with a Lagrangian optimization objective function. The second formulation, i.e., the {\em representational form}, is shown to include known results as special cases. Here, we develop a tailored version from the alternating direction method of multipliers (ADMM) algorithm for solving the resulting non-convex optimization problem. In the two cases, the convergence of the proposed solvers is established in certain relevant regimes. Furthermore, our empirical results demonstrate the effectiveness of the proposed methods as compared with the state-of-the-art solvers. In a nutshell, the proposed solvers offer computational efficiency, theoretical convergence guarantees, scalable complexity with the number of views, and exceptional accuracy as compared with the state-of-the-art techniques. Our focus here is devoted to the discrete case and our results for continuous distributions are reported elsewhere.

We consider the problem of identification of linear dynamical systems from a single trajectory. Recent results have predominantly focused on the setup where no structural assumption is made on the system matrix $A^* \in \mathbb{R}^{n \times n}$, and have consequently analyzed the ordinary least squares (OLS) estimator in detail. We assume prior structural information on $A^*$ is available, which can be captured in the form of a convex set $\mathcal{K}$ containing $A^*$. For the solution of the ensuing constrained least squares estimator, we derive non-asymptotic error bounds in the Frobenius norm which depend on the local size of the tangent cone of $\mathcal{K}$ at $A^*$. To illustrate the usefulness of this result, we instantiate it for the settings where, (i) $\mathcal{K}$ is a $d$ dimensional subspace of $\mathbb{R}^{n \times n}$, or (ii) $A^*$ is $k$-sparse and $\mathcal{K}$ is a suitably scaled $\ell_1$ ball. In the regimes where $d, k \ll n^2$, our bounds improve upon those obtained from the OLS estimator.

In the past decade, the technology industry has adopted online randomized controlled experiments (a.k.a. A/B testing) to guide product development and make business decisions. In practice, A/B tests are often implemented with increasing treatment allocation: the new treatment is gradually released to an increasing number of units through a sequence of randomized experiments. In scenarios such as experimenting in a social network setting or in a bipartite online marketplace, interference among units may exist, which can harm the validity of simple inference procedures. In this work, we introduce a widely applicable procedure to test for interference in A/B testing with increasing allocation. Our procedure can be implemented on top of an existing A/B testing platform with a separate flow and does not require a priori a specific interference mechanism. In particular, we introduce two permutation tests that are valid under different assumptions. Firstly, we introduce a general statistical test for interference requiring no additional assumption. Secondly, we introduce a testing procedure that is valid under a time fixed effect assumption. The testing procedure is of very low computational complexity, it is powerful, and it formalizes a heuristic algorithm implemented already in industry. We demonstrate the performance of the proposed testing procedure through simulations on synthetic data. Finally, we discuss one application at LinkedIn, where a screening step is implemented to detect potential interference in all their marketplace experiments with the proposed methods in the paper.

With the rapid increase of large-scale, real-world datasets, it becomes critical to address the problem of long-tailed data distribution (i.e., a few classes account for most of the data, while most classes are under-represented). Existing solutions typically adopt class re-balancing strategies such as re-sampling and re-weighting based on the number of observations for each class. In this work, we argue that as the number of samples increases, the additional benefit of a newly added data point will diminish. We introduce a novel theoretical framework to measure data overlap by associating with each sample a small neighboring region rather than a single point. The effective number of samples is defined as the volume of samples and can be calculated by a simple formula $(1-\beta^{n})/(1-\beta)$, where $n$ is the number of samples and $\beta \in [0,1)$ is a hyperparameter. We design a re-weighting scheme that uses the effective number of samples for each class to re-balance the loss, thereby yielding a class-balanced loss. Comprehensive experiments are conducted on artificially induced long-tailed CIFAR datasets and large-scale datasets including ImageNet and iNaturalist. Our results show that when trained with the proposed class-balanced loss, the network is able to achieve significant performance gains on long-tailed datasets.

北京阿比特科技有限公司