This paper investigates the in-context learning abilities of the Whisper automatic speech recognition (ASR) models released by OpenAI. A novel speech-based in-context learning (SICL) approach is proposed for test-time adaptation, which can reduce the word error rates (WERs) with only a small number of labelled speech samples without gradient descent. Language-level adaptation experiments using Chinese dialects showed that when applying SICL to isolated word ASR, consistent and considerable relative WER reductions can be achieved using Whisper models of any size on two dialects, which is on average 32.3%. A k-nearest-neighbours-based in-context example selection technique can be applied to further improve the efficiency of SICL, which can increase the average relative WER reduction to 36.4%. The findings are verified using speaker adaptation or continuous speech recognition tasks, and both achieved considerable relative WER reductions. Detailed quantitative analyses are also provided to shed light on SICL's adaptability to phonological variances and dialect-specific lexical nuances.
Bayesian optimal design of experiments is a well-established approach to planning experiments. Briefly, a probability distribution, known as a statistical model, for the responses is assumed which is dependent on a vector of unknown parameters. A utility function is then specified which gives the gain in information for estimating the true value of the parameters using the Bayesian posterior distribution. A Bayesian optimal design is given by maximising the expectation of the utility with respect to the joint distribution given by the statistical model and prior distribution for the true parameter values. The approach takes account of the experimental aim via specification of the utility and of all assumed sources of uncertainty via the expected utility. However, it is predicated on the specification of the statistical model. Recently, a new type of statistical inference, known as Gibbs (or General Bayesian) inference, has been advanced. This is Bayesian-like, in that uncertainty on unknown quantities is represented by a posterior distribution, but does not necessarily rely on specification of a statistical model. Thus the resulting inference should be less sensitive to misspecification of the statistical model. The purpose of this paper is to propose Gibbs optimal design: a framework for optimal design of experiments for Gibbs inference. The concept behind the framework is introduced along with a computational approach to find Gibbs optimal designs in practice. The framework is demonstrated on exemplars including linear models, and experiments with count and time-to-event responses.
We address speech enhancement based on variational autoencoders, which involves learning a speech prior distribution in the time-frequency (TF) domain. A zero-mean complex-valued Gaussian distribution is usually assumed for the generative model, where the speech information is encoded in the variance as a function of a latent variable. In contrast to this commonly used approach, we propose a weighted variance generative model, where the contribution of each spectrogram time-frame in parameter learning is weighted. We impose a Gamma prior distribution on the weights, which would effectively lead to a Student's t-distribution instead of Gaussian for speech generative modeling. We develop efficient training and speech enhancement algorithms based on the proposed generative model. Our experimental results on spectrogram auto-encoding and speech enhancement demonstrate the effectiveness and robustness of the proposed approach compared to the standard unweighted variance model.
We investigate Unsupervised Episode Generation methods to solve Few-Shot Node-Classification (FSNC) task via Meta-learning without labels. Dominant meta-learning methodologies for FSNC were developed under the existence of abundant labeled nodes from diverse base classes for training, which however may not be possible to obtain in the real-world. Although a few studies tried to tackle the label-scarcity problem in graph meta-learning, they still rely on a few labeled nodes, which hinders the full utilization of the information of all nodes in a graph. Despite the effectiveness of graph contrastive learning (GCL) methods in the FSNC task without using the label information, they mainly learn generic node embeddings without consideration of the downstream task to be solved, which may limit its performance in the FSNC task. To this end, we propose a simple yet effective unsupervised episode generation method to benefit from the generalization ability of meta-learning for the FSNC task, while resolving the label-scarcity problem. Our proposed method, called Neighbors as Queries (NaQ), generates training episodes based on pre-calculated node-node similarity. Moreover, NaQ is model-agnostic; hence, it can be used to train any existing supervised graph meta-learning methods in an unsupervised manner, while not sacrificing much of their performance or sometimes even improving them. Extensive experimental results demonstrate the potential of our unsupervised episode generation methods for graph meta-learning towards the FSNC task. Our code is available at: //github.com/JhngJng/NaQ-PyTorch
Structured reinforcement learning leverages policies with advantageous properties to reach better performance, particularly in scenarios where exploration poses challenges. We explore this field through the concept of orchestration, where a (small) set of expert policies guides decision-making; the modeling thereof constitutes our first contribution. We then establish value-functions regret bounds for orchestration in the tabular setting by transferring regret-bound results from adversarial settings. We generalize and extend the analysis of natural policy gradient in Agarwal et al. [2021, Section 5.3] to arbitrary adversarial aggregation strategies. We also extend it to the case of estimated advantage functions, providing insights into sample complexity both in expectation and high probability. A key point of our approach lies in its arguably more transparent proofs compared to existing methods. Finally, we present simulations for a stochastic matching toy model.
This proposed model introduces novel deep learning methodologies. The objective here is to create a reliable intrusion detection mechanism to help identify malicious attacks. Deep learning based solution framework is developed consisting of three approaches. The first approach is Long-Short Term Memory Recurrent Neural Network (LSTM-RNN) with seven optimizer functions such as adamax, SGD, adagrad, adam, RMSprop, nadam and adadelta. The model is evaluated on NSL-KDD dataset and classified multi attack classification. The model has outperformed with adamax optimizer in terms of accuracy, detection rate and low false alarm rate. The results of LSTM-RNN with adamax optimizer is compared with existing shallow machine and deep learning models in terms of accuracy, detection rate and low false alarm rate. The multi model methodology consisting of Recurrent Neural Network (RNN), Long-Short Term Memory Recurrent Neural Network (LSTM-RNN), and Deep Neural Network (DNN). The multi models are evaluated on bench mark datasets such as KDD99, NSL-KDD, and UNSWNB15 datasets. The models self-learnt the features and classifies the attack classes as multi-attack classification. The models RNN, and LSTM-RNN provide considerable performance compared to other existing methods on KDD99 and NSL-KDD dataset
This paper surveys vision-language pre-training (VLP) methods for multimodal intelligence that have been developed in the last few years. We group these approaches into three categories: ($i$) VLP for image-text tasks, such as image captioning, image-text retrieval, visual question answering, and visual grounding; ($ii$) VLP for core computer vision tasks, such as (open-set) image classification, object detection, and segmentation; and ($iii$) VLP for video-text tasks, such as video captioning, video-text retrieval, and video question answering. For each category, we present a comprehensive review of state-of-the-art methods, and discuss the progress that has been made and challenges still being faced, using specific systems and models as case studies. In addition, for each category, we discuss advanced topics being actively explored in the research community, such as big foundation models, unified modeling, in-context few-shot learning, knowledge, robustness, and computer vision in the wild, to name a few.
Graph-centric artificial intelligence (graph AI) has achieved remarkable success in modeling interacting systems prevalent in nature, from dynamical systems in biology to particle physics. The increasing heterogeneity of data calls for graph neural architectures that can combine multiple inductive biases. However, combining data from various sources is challenging because appropriate inductive bias may vary by data modality. Multimodal learning methods fuse multiple data modalities while leveraging cross-modal dependencies to address this challenge. Here, we survey 140 studies in graph-centric AI and realize that diverse data types are increasingly brought together using graphs and fed into sophisticated multimodal models. These models stratify into image-, language-, and knowledge-grounded multimodal learning. We put forward an algorithmic blueprint for multimodal graph learning based on this categorization. The blueprint serves as a way to group state-of-the-art architectures that treat multimodal data by choosing appropriately four different components. This effort can pave the way for standardizing the design of sophisticated multimodal architectures for highly complex real-world problems.
Few-shot learning (FSL) methods typically assume clean support sets with accurately labeled samples when training on novel classes. This assumption can often be unrealistic: support sets, no matter how small, can still include mislabeled samples. Robustness to label noise is therefore essential for FSL methods to be practical, but this problem surprisingly remains largely unexplored. To address mislabeled samples in FSL settings, we make several technical contributions. (1) We offer simple, yet effective, feature aggregation methods, improving the prototypes used by ProtoNet, a popular FSL technique. (2) We describe a novel Transformer model for Noisy Few-Shot Learning (TraNFS). TraNFS leverages a transformer's attention mechanism to weigh mislabeled versus correct samples. (3) Finally, we extensively test these methods on noisy versions of MiniImageNet and TieredImageNet. Our results show that TraNFS is on-par with leading FSL methods on clean support sets, yet outperforms them, by far, in the presence of label noise.
We study few-shot acoustic event detection (AED) in this paper. Few-shot learning enables detection of new events with very limited labeled data. Compared to other research areas like computer vision, few-shot learning for audio recognition has been under-studied. We formulate few-shot AED problem and explore different ways of utilizing traditional supervised methods for this setting as well as a variety of meta-learning approaches, which are conventionally used to solve few-shot classification problem. Compared to supervised baselines, meta-learning models achieve superior performance, thus showing its effectiveness on generalization to new audio events. Our analysis including impact of initialization and domain discrepancy further validate the advantage of meta-learning approaches in few-shot AED.
Deep learning constitutes a recent, modern technique for image processing and data analysis, with promising results and large potential. As deep learning has been successfully applied in various domains, it has recently entered also the domain of agriculture. In this paper, we perform a survey of 40 research efforts that employ deep learning techniques, applied to various agricultural and food production challenges. We examine the particular agricultural problems under study, the specific models and frameworks employed, the sources, nature and pre-processing of data used, and the overall performance achieved according to the metrics used at each work under study. Moreover, we study comparisons of deep learning with other existing popular techniques, in respect to differences in classification or regression performance. Our findings indicate that deep learning provides high accuracy, outperforming existing commonly used image processing techniques.