亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Building socially-intelligent AI agents (Social-AI) is a multidisciplinary, multimodal research goal that involves creating agents that can sense, perceive, reason about, learn from, and respond to affect, behavior, and cognition of other agents (human or artificial). Progress towards Social-AI has accelerated in the past decade across several computing communities, including natural language processing, machine learning, robotics, human-machine interaction, computer vision, and speech. Natural language processing, in particular, has been prominent in Social-AI research, as language plays a key role in constructing the social world. In this position paper, we identify a set of underlying technical challenges and open questions for researchers across computing communities to advance Social-AI. We anchor our discussion in the context of social intelligence concepts and prior progress in Social-AI research.

相關內容

The attention mechanism is a critical component of Large Language Models (LLMs) that allows tokens in a sequence to interact with each other, but is order-invariant. Incorporating position encoding (PE) makes it possible to address by position, such as attending to the i-th token. However, current PE methods use token counts to derive position, and thus cannot generalize to higher levels of abstraction, such as attending to the i-th sentence. In this paper, we propose a new position encoding method, Contextual Position Encoding (CoPE), that allows positions to be conditioned on context by incrementing position only on certain tokens determined by the model. This allows more general position addressing such as attending to the $i$-th particular word, noun, or sentence. We show that CoPE can solve the selective copy, counting and Flip-Flop tasks where popular position embeddings fail, and improves perplexity on language modeling and coding tasks.

Deep neural networks (DNNs) can easily be cheated by some imperceptible but purposeful noise added to images, and erroneously classify them. Previous defensive work mostly focused on retraining the models or detecting the noise, but has either shown limited success rates or been attacked by new adversarial examples. Instead of focusing on adversarial images or the interior of DNN models, we observed that adversarial examples generated by different algorithms can be identified based on the output of DNNs (logits). Logit can serve as an exterior feature to train detectors. Then, we propose HOLMES (Hierarchically Organized Light-weight Multiple dEtector System) to reinforce DNNs by detecting potential adversarial examples to minimize the threats they may bring in practical. HOLMES is able to distinguish \textit{unseen} adversarial examples from multiple attacks with high accuracy and low false positive rates than single detector systems even in an adaptive model. To ensure the diversity and randomness of detectors in HOLMES, we use two methods: training dedicated detectors for each label and training detectors with top-k logits. Our effective and inexpensive strategies neither modify original DNN models nor require its internal parameters. HOLMES is not only compatible with all kinds of learning models (even only with external APIs), but also complementary to other defenses to achieve higher detection rates (may also fully protect the system against various adversarial examples).

In this work, from a theoretical lens, we aim to understand why large language model (LLM) empowered agents are able to solve decision-making problems in the physical world. To this end, consider a hierarchical reinforcement learning (RL) model where the LLM Planner and the Actor perform high-level task planning and low-level execution, respectively. Under this model, the LLM Planner navigates a partially observable Markov decision process (POMDP) by iteratively generating language-based subgoals via prompting. Under proper assumptions on the pretraining data, we prove that the pretrained LLM Planner effectively performs Bayesian aggregated imitation learning (BAIL) through in-context learning. Additionally, we highlight the necessity for exploration beyond the subgoals derived from BAIL by proving that naively executing the subgoals returned by LLM leads to a linear regret. As a remedy, we introduce an $\epsilon$-greedy exploration strategy to BAIL, which is proven to incur sublinear regret when the pretraining error is small. Finally, we extend our theoretical framework to include scenarios where the LLM Planner serves as a world model for inferring the transition model of the environment and to multi-agent settings, enabling coordination among multiple Actors.

The observed similarities in the behavior of humans and Large Language Models (LLMs) have prompted researchers to consider the potential of using LLMs as models of human cognition. However, several significant challenges must be addressed before LLMs can be legitimately regarded as cognitive models. For instance, LLMs are trained on far more data than humans typically encounter, and may have been directly trained on human data in specific cognitive tasks or aligned with human preferences. Consequently, the origins of these behavioral similarities are not well understood. In this paper, we propose a novel way to enhance the utility of LLMs as cognitive models. This approach involves (i) leveraging computationally equivalent tasks that both an LLM and a rational agent need to master for solving a cognitive problem and (ii) examining the specific task distributions required for an LLM to exhibit human-like behaviors. We apply this approach to decision-making -- specifically risky and intertemporal choice -- where the key computationally equivalent task is the arithmetic of expected value calculations. We show that an LLM pretrained on an ecologically valid arithmetic dataset, which we call Arithmetic-GPT, predicts human behavior better than many traditional cognitive models. Pretraining LLMs on ecologically valid arithmetic datasets is sufficient to produce a strong correspondence between these models and human decision-making. Our results also suggest that LLMs used as cognitive models should be carefully investigated via ablation studies of the pretraining data.

Since the rise of Large Language Models (LLMs) a couple of years ago, researchers in metaheuristics (MHs) have wondered how to use their power in a beneficial way within their algorithms. This paper introduces a novel approach that leverages LLMs as pattern recognition tools to improve MHs. The resulting hybrid method, tested in the context of a social network-based combinatorial optimization problem, outperforms existing state-of-the-art approaches that combine machine learning with MHs regarding the obtained solution quality. By carefully designing prompts, we demonstrate that the output obtained from LLMs can be used as problem knowledge, leading to improved results. Lastly, we acknowledge LLMs' potential drawbacks and limitations and consider it essential to examine them to advance this type of research further.

We argue that enabling human-AI dialogue, purposed to support joint reasoning (i.e., 'inquiry'), is important for ensuring that AI decision making is aligned with human values and preferences. In particular, we point to logic-based models of argumentation and dialogue, and suggest that the traditional focus on persuasion dialogues be replaced by a focus on inquiry dialogues, and the distinct challenges that joint inquiry raises. Given recent dramatic advances in the performance of large language models (LLMs), and the anticipated increase in their use for decision making, we provide a roadmap for research into inquiry dialogues for supporting joint human-LLM reasoning tasks that are ethically salient, and that thereby require that decisions are value aligned.

Reasoning is a fundamental aspect of human intelligence that plays a crucial role in activities such as problem solving, decision making, and critical thinking. In recent years, large language models (LLMs) have made significant progress in natural language processing, and there is observation that these models may exhibit reasoning abilities when they are sufficiently large. However, it is not yet clear to what extent LLMs are capable of reasoning. This paper provides a comprehensive overview of the current state of knowledge on reasoning in LLMs, including techniques for improving and eliciting reasoning in these models, methods and benchmarks for evaluating reasoning abilities, findings and implications of previous research in this field, and suggestions on future directions. Our aim is to provide a detailed and up-to-date review of this topic and stimulate meaningful discussion and future work.

In pace with developments in the research field of artificial intelligence, knowledge graphs (KGs) have attracted a surge of interest from both academia and industry. As a representation of semantic relations between entities, KGs have proven to be particularly relevant for natural language processing (NLP), experiencing a rapid spread and wide adoption within recent years. Given the increasing amount of research work in this area, several KG-related approaches have been surveyed in the NLP research community. However, a comprehensive study that categorizes established topics and reviews the maturity of individual research streams remains absent to this day. Contributing to closing this gap, we systematically analyzed 507 papers from the literature on KGs in NLP. Our survey encompasses a multifaceted review of tasks, research types, and contributions. As a result, we present a structured overview of the research landscape, provide a taxonomy of tasks, summarize our findings, and highlight directions for future work.

Inspired by the human cognitive system, attention is a mechanism that imitates the human cognitive awareness about specific information, amplifying critical details to focus more on the essential aspects of data. Deep learning has employed attention to boost performance for many applications. Interestingly, the same attention design can suit processing different data modalities and can easily be incorporated into large networks. Furthermore, multiple complementary attention mechanisms can be incorporated in one network. Hence, attention techniques have become extremely attractive. However, the literature lacks a comprehensive survey specific to attention techniques to guide researchers in employing attention in their deep models. Note that, besides being demanding in terms of training data and computational resources, transformers only cover a single category in self-attention out of the many categories available. We fill this gap and provide an in-depth survey of 50 attention techniques categorizing them by their most prominent features. We initiate our discussion by introducing the fundamental concepts behind the success of attention mechanism. Next, we furnish some essentials such as the strengths and limitations of each attention category, describe their fundamental building blocks, basic formulations with primary usage, and applications specifically for computer vision. We also discuss the challenges and open questions related to attention mechanism in general. Finally, we recommend possible future research directions for deep attention.

Reinforcement learning (RL) is a popular paradigm for addressing sequential decision tasks in which the agent has only limited environmental feedback. Despite many advances over the past three decades, learning in many domains still requires a large amount of interaction with the environment, which can be prohibitively expensive in realistic scenarios. To address this problem, transfer learning has been applied to reinforcement learning such that experience gained in one task can be leveraged when starting to learn the next, harder task. More recently, several lines of research have explored how tasks, or data samples themselves, can be sequenced into a curriculum for the purpose of learning a problem that may otherwise be too difficult to learn from scratch. In this article, we present a framework for curriculum learning (CL) in reinforcement learning, and use it to survey and classify existing CL methods in terms of their assumptions, capabilities, and goals. Finally, we use our framework to find open problems and suggest directions for future RL curriculum learning research.

北京阿比特科技有限公司