亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Bilevel optimization has arisen as a powerful tool for many machine learning problems such as meta-learning, hyperparameter optimization, and reinforcement learning. In this paper, we investigate the nonconvex-strongly-convex bilevel optimization problem. For deterministic bilevel optimization, we provide a comprehensive convergence rate analysis for two popular algorithms respectively based on approximate implicit differentiation (AID) and iterative differentiation (ITD). For the AID-based method, we orderwisely improve the previous convergence rate analysis due to a more practical parameter selection as well as a warm start strategy, and for the ITD-based method we establish the first theoretical convergence rate. Our analysis also provides a quantitative comparison between ITD and AID based approaches. For stochastic bilevel optimization, we propose a novel algorithm named stocBiO, which features a sample-efficient hypergradient estimator using efficient Jacobian- and Hessian-vector product computations. We provide the convergence rate guarantee for stocBiO, and show that stocBiO outperforms the best known computational complexities orderwisely with respect to the condition number $\kappa$ and the target accuracy $\epsilon$. We further validate our theoretical results and demonstrate the efficiency of bilevel optimization algorithms by the experiments on meta-learning and hyperparameter optimization.

相關內容

最優化是應用數學的一個分支,主要指在一定條件限制下,選取某種研究方案使目標達到最優的一種方法。最優化問題在當今的軍事、工程、管理等領域有著極其廣泛的應用。

We study the consensus decentralized optimization problem where the objective function is the average of $n$ agents private non-convex cost functions; moreover, the agents can only communicate to their neighbors on a given network topology. The stochastic online setting is considered in this paper where each agent can only access a noisy estimate of its gradient. Many decentralized methods can solve such problems including EXTRA, Exact-Diffusion/D$^2$, and gradient-tracking. Unlike the famed $\small \text{DSGD}$ algorithm, these methods have been shown to be robust to the heterogeneity of the local cost functions. However, the established convergence rates for these methods indicate that their sensitivity to the network topology is worse than $\small \text{DSGD}$. Such theoretical results imply that these methods can perform much worse than $\small \text{DSGD}$ over sparse networks, which, however, contradicts empirical experiments where $\small \text{DSGD}$ is observed to be more sensitive to the network topology. In this work, we study a general stochastic unified decentralized algorithm ($\small\textbf{SUDA}$) that includes the above methods as special cases. We establish the convergence of $\small\textbf{SUDA}$ under both non-convex and the Polyak-Lojasiewicz condition settings. Our results provide improved network topology dependent bounds for these methods (such as Exact-Diffusion/D$^2$ and gradient-tracking) compared with existing literature. Moreover, our result shows that these method are less sensitive to the network topology compared to $\small \text{DSGD}$, which agrees with numerical experiments.

This paper considers the numerical treatment of the time-dependent Gross-Pitaevskii equation. In order to conserve the time invariants of the equation as accurately as possible, we propose a Crank-Nicolson-type time discretization that is combined with a suitable generalized finite element discretization in space. The space discretization is based on the technique of Localized Orthogonal Decompositions (LOD) and allows to capture the time invariants with an accuracy of order $\mathcal{O}(H^6)$ with respect to the chosen mesh size $H$. This accuracy is preserved due to the conservation properties of the time stepping method. Furthermore, we prove that the resulting scheme approximates the exact solution in the $L^{\infty}(L^2)$-norm with order $\mathcal{O}(\tau^2 + H^4)$, where $\tau$ denotes the step size. The computational efficiency of the method is demonstrated in numerical experiments for a benchmark problem with known exact solution.

Ordered Weighted $L_{1}$ (OWL) regularized regression is a new regression analysis for high-dimensional sparse learning. Proximal gradient methods are used as standard approaches to solve OWL regression. However, it is still a burning issue to solve OWL regression due to considerable computational cost and memory usage when the feature or sample size is large. In this paper, we propose the first safe screening rule for OWL regression by exploring the order of the primal solution with the unknown order structure via an iterative strategy, which overcomes the difficulties of tackling the non-separable regularizer. It effectively avoids the updates of the parameters whose coefficients must be zero during the learning process. More importantly, the proposed screening rule can be easily applied to standard and stochastic proximal gradient methods. Moreover, we prove that the algorithms with our screening rule are guaranteed to have identical results with the original algorithms. Experimental results on a variety of datasets show that our screening rule leads to a significant computational gain without any loss of accuracy, compared to existing competitive algorithms.

Many data-science problems can be formulated as an inverse problem, where the parameters are estimated by minimizing a proper loss function. When complicated black-box models are involved, derivative-free optimization tools are often needed. The ensemble Kalman filter (EnKF) is a particle-based derivative-free Bayesian algorithm originally designed for data assimilation. Recently, it has been applied to inverse problems for computational efficiency. The resulting algorithm, known as ensemble Kalman inversion (EKI), involves running an ensemble of particles with EnKF update rules so they can converge to a minimizer. In this article, we investigate EKI convergence in general nonlinear settings. To improve convergence speed and stability, we consider applying EKI with non-constant step-sizes and covariance inflation. We prove that EKI can hit critical points with finite steps in non-convex settings. We further prove that EKI converges to the global minimizer polynomially fast if the loss function is strongly convex. We verify the analysis presented with numerical experiments on two inverse problems.

We present a new algorithmic framework for grouped variable selection that is based on discrete mathematical optimization. While there exist several appealing approaches based on convex relaxations and nonconvex heuristics, we focus on optimal solutions for the $\ell_0$-regularized formulation, a problem that is relatively unexplored due to computational challenges. Our methodology covers both high-dimensional linear regression and nonparametric sparse additive modeling with smooth components. Our algorithmic framework consists of approximate and exact algorithms. The approximate algorithms are based on coordinate descent and local search, with runtimes comparable to popular sparse learning algorithms. Our exact algorithm is based on a standalone branch-and-bound (BnB) framework, which can solve the associated mixed integer programming (MIP) problem to certified optimality. By exploiting the problem structure, our custom BnB algorithm can solve to optimality problem instances with $5 \times 10^6$ features and $10^3$ observations in minutes to hours -- over $1000$ times larger than what is currently possible using state-of-the-art commercial MIP solvers. We also explore statistical properties of the $\ell_0$-based estimators. We demonstrate, theoretically and empirically, that our proposed estimators have an edge over popular group-sparse estimators in terms of statistical performance in various regimes. We provide an open-source implementation of our proposed framework.

In this paper, we propose a data-driven model reduction method to solve parabolic inverse source problems efficiently. Our method consists of offline and online stages. In the off-line stage, we explore the low-dimensional structures in the solution space of the parabolic partial differential equations (PDEs) in the forward problem with a given class of source functions and construct a small number of proper orthogonal decomposition (POD) basis functions to achieve significant dimension reduction. Equipped with the POD basis functions, we can solve the forward problem extremely fast in the online stage. Thus, we develop a fast algorithm to solve the optimization problem in the parabolic inverse source problems, which is referred to as the POD algorithm in this paper. Under a weak regularity assumption on the solution of the parabolic PDEs, we prove the convergence of the POD algorithm in solving the forward parabolic PDEs. In addition, we obtain the error estimate of the POD algorithm for parabolic inverse source problems. Finally, we present numerical examples to demonstrate the accuracy and efficiency of the proposed method. Our numerical results show that the POD algorithm provides considerable computational savings over the finite element method.

This paper investigates the stochastic distributed nonconvex optimization problem of minimizing a global cost function formed by the summation of $n$ local cost functions. We solve such a problem by involving zeroth-order (ZO) information exchange. In this paper, we propose a ZO distributed primal-dual coordinate method (ZODIAC) to solve the stochastic optimization problem. Agents approximate their own local stochastic ZO oracle along with coordinates with an adaptive smoothing parameter. We show that the proposed algorithm achieves the convergence rate of $\mathcal{O}(\sqrt{p}/\sqrt{T})$ for general nonconvex cost functions. We demonstrate the efficiency of proposed algorithms through a numerical example in comparison with the existing state-of-the-art centralized and distributed ZO algorithms.

Proximal Policy Optimization (PPO) is a highly popular model-free reinforcement learning (RL) approach. However, in continuous state and actions spaces and a Gaussian policy -- common in computer animation and robotics -- PPO is prone to getting stuck in local optima. In this paper, we observe a tendency of PPO to prematurely shrink the exploration variance, which naturally leads to slow progress. Motivated by this, we borrow ideas from CMA-ES, a black-box optimization method designed for intelligent adaptive Gaussian exploration, to derive PPO-CMA, a novel proximal policy optimization approach that can expand the exploration variance on objective function slopes and shrink the variance when close to the optimum. This is implemented by using separate neural networks for policy mean and variance and training the mean and variance in separate passes. Our experiments demonstrate a clear improvement over vanilla PPO in many difficult OpenAI Gym MuJoCo tasks.

We propose accelerated randomized coordinate descent algorithms for stochastic optimization and online learning. Our algorithms have significantly less per-iteration complexity than the known accelerated gradient algorithms. The proposed algorithms for online learning have better regret performance than the known randomized online coordinate descent algorithms. Furthermore, the proposed algorithms for stochastic optimization exhibit as good convergence rates as the best known randomized coordinate descent algorithms. We also show simulation results to demonstrate performance of the proposed algorithms.

We develop an approach to risk minimization and stochastic optimization that provides a convex surrogate for variance, allowing near-optimal and computationally efficient trading between approximation and estimation error. Our approach builds off of techniques for distributionally robust optimization and Owen's empirical likelihood, and we provide a number of finite-sample and asymptotic results characterizing the theoretical performance of the estimator. In particular, we show that our procedure comes with certificates of optimality, achieving (in some scenarios) faster rates of convergence than empirical risk minimization by virtue of automatically balancing bias and variance. We give corroborating empirical evidence showing that in practice, the estimator indeed trades between variance and absolute performance on a training sample, improving out-of-sample (test) performance over standard empirical risk minimization for a number of classification problems.

北京阿比特科技有限公司