The Incremental Potential Contact (IPC) method enables robust complex simulations of deformable objects with contact and friction. The key to IPC's robustness is its strict adherence to geometric constraints, avoiding intersections, which are a common cause of robustness issues in contact mechanics. A key element of the IPC approach to contact is a geometric barrier function, which is defined directly in the discrete setting. While IPC achieves its main goal of providing guarantees for contact constraints, its parameters need to be chosen carefully to avoid significant simulation artifacts and inaccuracies. We present a systematic derivation of an IPC-like continuum potential defined for smooth and piecewise smooth surfaces, starting from identifying a set of natural requirements for contact potentials, including the barrier property, locality, differentiable dependence of shape, and absence of forces in rest configurations, based on the idea of candidate sets. Our potential is formulated in a way independent of surface discretization. This new potential is suitable for piecewise-linear surfaces and its efficiency is similar to standard IPC. We demonstrate its behavior and compare it to IPC on a range of challenging contact examples.
Large Language Models (LLMs), benefiting from the auto-regressive modelling approach performed on massive unannotated texts corpora, demonstrates powerful perceptual and reasoning capabilities. However, as for extending auto-regressive modelling to multi-modal scenarios to build Large Multi-modal Models (LMMs), there lies a great difficulty that the image information is processed in the LMM as continuous visual embeddings, which cannot obtain discrete supervised labels for classification. In this paper, we successfully perform multi-modal auto-regressive modeling with a unified objective for the first time. Specifically, we propose the concept of visual words, which maps the visual features to probability distributions over LLM's vocabulary, providing supervision information for visual modelling. We further explore the distribution of visual features in the semantic space within LMM and the possibility of using text embeddings to represent visual information. Experimental results and ablation studies on 5 VQA tasks and 4 benchmark toolkits validate the powerful performance of our proposed approach.
Semantic scene completion (SSC) aims to predict complete 3D voxel occupancy and semantics from a single-view RGB-D image, and recent SSC methods commonly adopt multi-modal inputs. However, our investigation reveals two limitations: ineffective feature learning from single modalities and overfitting to limited datasets. To address these issues, this paper proposes a novel SSC framework - Adversarial Modality Modulation Network (AMMNet) - with a fresh perspective of optimizing gradient updates. The proposed AMMNet introduces two core modules: a cross-modal modulation enabling the interdependence of gradient flows between modalities, and a customized adversarial training scheme leveraging dynamic gradient competition. Specifically, the cross-modal modulation adaptively re-calibrates the features to better excite representation potentials from each single modality. The adversarial training employs a minimax game of evolving gradients, with customized guidance to strengthen the generator's perception of visual fidelity from both geometric completeness and semantic correctness. Extensive experimental results demonstrate that AMMNet outperforms state-of-the-art SSC methods by a large margin, providing a promising direction for improving the effectiveness and generalization of SSC methods.
The advancements in Large Language Models (LLMs) have been hindered by their substantial sizes, which necessitate LLM compression methods for practical deployment. Singular Value Decomposition (SVD) offers a promising solution for LLM compression. However, state-of-the-art SVD-based LLM compression methods have two key limitations: truncating smaller singular values may lead to higher compression loss, and the lack of update on the remaining model parameters after SVD truncation. In this work, we propose SVD-LLM, a new SVD-based LLM compression method that addresses the limitations of existing methods. SVD-LLM incorporates a truncation-aware data whitening strategy to ensure a direct mapping between singular values and compression loss. Moreover, SVD-LLM adopts a layer-wise closed-form model parameter update strategy to compensate for accuracy degradation caused by SVD truncation. We evaluate SVD-LLM on a total of 11 datasets and seven models from three different LLM families at four different scales. Our results demonstrate the superiority of SVD-LLM over state-of-the-arts, especially at high model compression ratios. The source code is available at //github.com/AIoT-MLSys-Lab/SVD-LLM.
Federated Learning (FL) is a well-known paradigm of distributed machine learning on mobile and IoT devices, which preserves data privacy and optimizes communication efficiency. To avoid the single point of failure problem in FL, decentralized federated learning (DFL) has been proposed to use peer-to-peer communication for model aggregation, which has been considered an attractive solution for machine learning tasks on distributed personal devices. However, this process is vulnerable to attackers who share false models and data. If there exists a group of malicious clients, they might harm the performance of the model by carrying out a poisoning attack. In addition, in DFL, clients often lack the incentives to contribute their computing powers to do model training. In this paper, we proposed Blockchain-based Decentralized Federated Learning (BDFL), which leverages a blockchain for decentralized model verification and auditing. BDFL includes an auditor committee for model verification, an incentive mechanism to encourage the participation of clients, a reputation model to evaluate the trustworthiness of clients, and a protocol suite for dynamic network updates. Evaluation results show that, with the reputation mechanism, BDFL achieves fast model convergence and high accuracy on real datasets even if there exist 30\% malicious clients in the system.
Emergency Medical Services (EMS) responders often operate under time-sensitive conditions, facing cognitive overload and inherent risks, requiring essential skills in critical thinking and rapid decision-making. This paper presents CognitiveEMS, an end-to-end wearable cognitive assistant system that can act as a collaborative virtual partner engaging in the real-time acquisition and analysis of multimodal data from an emergency scene and interacting with EMS responders through Augmented Reality (AR) smart glasses. CognitiveEMS processes the continuous streams of data in real-time and leverages edge computing to provide assistance in EMS protocol selection and intervention recognition. We address key technical challenges in real-time cognitive assistance by introducing three novel components: (i) a Speech Recognition model that is fine-tuned for real-world medical emergency conversations using simulated EMS audio recordings, augmented with synthetic data generated by large language models (LLMs); (ii) an EMS Protocol Prediction model that combines state-of-the-art (SOTA) tiny language models with EMS domain knowledge using graph-based attention mechanisms; (iii) an EMS Action Recognition module which leverages multimodal audio and video data and protocol predictions to infer the intervention/treatment actions taken by the responders at the incident scene. Our results show that for speech recognition we achieve superior performance compared to SOTA (WER of 0.290 vs. 0.618) on conversational data. Our protocol prediction component also significantly outperforms SOTA (top-3 accuracy of 0.800 vs. 0.200) and the action recognition achieves an accuracy of 0.727, while maintaining an end-to-end latency of 3.78s for protocol prediction on the edge and 0.31s on the server.
Task and Motion Planning (TAMP) algorithms can generate plans that combine logic and motion aspects for robots. However, these plans are sensitive to interference and control errors. To make TAMP more applicable in real-world, we propose the modular multi-level replanning TAMP framework(MMRF), blending the probabilistic completeness of sampling-based TAMP algorithm with the robustness of reactive replanning. MMRF generates an nominal plan from the initial state, then dynamically reconstructs this nominal plan in real-time, reorders robot manipulations. Following the logic-level adjustment, GMRF will try to replan a new motion path to ensure the updated plan is feasible at the motion level. Finally, we conducted real-world experiments involving stack and rearrange task domains. The result demonstrate MMRF's ability to swiftly complete tasks in scenarios with varying degrees of interference.
Message passing Graph Neural Networks (GNNs) provide a powerful modeling framework for relational data. However, the expressive power of existing GNNs is upper-bounded by the 1-Weisfeiler-Lehman (1-WL) graph isomorphism test, which means GNNs that are not able to predict node clustering coefficients and shortest path distances, and cannot differentiate between different d-regular graphs. Here we develop a class of message passing GNNs, named Identity-aware Graph Neural Networks (ID-GNNs), with greater expressive power than the 1-WL test. ID-GNN offers a minimal but powerful solution to limitations of existing GNNs. ID-GNN extends existing GNN architectures by inductively considering nodes' identities during message passing. To embed a given node, ID-GNN first extracts the ego network centered at the node, then conducts rounds of heterogeneous message passing, where different sets of parameters are applied to the center node than to other surrounding nodes in the ego network. We further propose a simplified but faster version of ID-GNN that injects node identity information as augmented node features. Altogether, both versions of ID-GNN represent general extensions of message passing GNNs, where experiments show that transforming existing GNNs to ID-GNNs yields on average 40% accuracy improvement on challenging node, edge, and graph property prediction tasks; 3% accuracy improvement on node and graph classification benchmarks; and 15% ROC AUC improvement on real-world link prediction tasks. Additionally, ID-GNNs demonstrate improved or comparable performance over other task-specific graph networks.
Learning node embeddings that capture a node's position within the broader graph structure is crucial for many prediction tasks on graphs. However, existing Graph Neural Network (GNN) architectures have limited power in capturing the position/location of a given node with respect to all other nodes of the graph. Here we propose Position-aware Graph Neural Networks (P-GNNs), a new class of GNNs for computing position-aware node embeddings. P-GNN first samples sets of anchor nodes, computes the distance of a given target node to each anchor-set,and then learns a non-linear distance-weighted aggregation scheme over the anchor-sets. This way P-GNNs can capture positions/locations of nodes with respect to the anchor nodes. P-GNNs have several advantages: they are inductive, scalable,and can incorporate node feature information. We apply P-GNNs to multiple prediction tasks including link prediction and community detection. We show that P-GNNs consistently outperform state of the art GNNs, with up to 66% improvement in terms of the ROC AUC score.
Most deep learning-based models for speech enhancement have mainly focused on estimating the magnitude of spectrogram while reusing the phase from noisy speech for reconstruction. This is due to the difficulty of estimating the phase of clean speech. To improve speech enhancement performance, we tackle the phase estimation problem in three ways. First, we propose Deep Complex U-Net, an advanced U-Net structured model incorporating well-defined complex-valued building blocks to deal with complex-valued spectrograms. Second, we propose a polar coordinate-wise complex-valued masking method to reflect the distribution of complex ideal ratio masks. Third, we define a novel loss function, weighted source-to-distortion ratio (wSDR) loss, which is designed to directly correlate with a quantitative evaluation measure. Our model was evaluated on a mixture of the Voice Bank corpus and DEMAND database, which has been widely used by many deep learning models for speech enhancement. Ablation experiments were conducted on the mixed dataset showing that all three proposed approaches are empirically valid. Experimental results show that the proposed method achieves state-of-the-art performance in all metrics, outperforming previous approaches by a large margin.
Within the rapidly developing Internet of Things (IoT), numerous and diverse physical devices, Edge devices, Cloud infrastructure, and their quality of service requirements (QoS), need to be represented within a unified specification in order to enable rapid IoT application development, monitoring, and dynamic reconfiguration. But heterogeneities among different configuration knowledge representation models pose limitations for acquisition, discovery and curation of configuration knowledge for coordinated IoT applications. This paper proposes a unified data model to represent IoT resource configuration knowledge artifacts. It also proposes IoT-CANE (Context-Aware recommendatioN systEm) to facilitate incremental knowledge acquisition and declarative context driven knowledge recommendation.