亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

The rise of machine learning technology inspires a boom of its applications in electronic design automation (EDA) and helps improve the degree of automation in chip designs. However, manually crafted machine learning models require extensive human expertise and tremendous engineering efforts. In this work, we leverage neural architecture search (NAS) to automate the development of high-quality neural architectures for routability prediction, which can help to guide cell placement toward routable solutions. Our search method supports various operations and highly flexible connections, leading to architectures significantly different from all previous human-crafted models. Experimental results on a large dataset demonstrate that our automatically generated neural architectures clearly outperform multiple representative manually crafted solutions. Compared to the best case of manually crafted models, NAS-generated models achieve 5.85% higher Kendall's $\tau$ in predicting the number of nets with DRC violations and 2.12% better area under ROC curve (ROC-AUC) in DRC hotspot detection. Moreover, compared with human-crafted models, which easily take weeks to develop, our efficient NAS approach finishes the whole automatic search process with only 0.3 days.

相關內容

Automator是蘋果公司為他們的Mac OS X系統開發的一款軟件。 只要通過點擊拖拽鼠標等操作就可以將一系列動作組合成一個工作流,從而幫助你自動的(可重復的)完成一些復雜的工作。Automator還能橫跨很多不同種類的程序,包括:查找器、Safari網絡瀏覽器、iCal、地址簿或者其他的一些程序。它還能和一些第三方的程序一起工作,如微軟的Office、Adobe公司的Photoshop或者Pixelmator等。

Mobile and edge computing devices for always-on audio classification require energy-efficient neural network architectures. We present a neural architecture search (NAS) that optimizes accuracy, energy efficiency and memory usage. The search is run on Vizier, a black-box optimization service. We present a search strategy that uses both Bayesian and regularized evolutionary search with particle swarms, and employs early-stopping to reduce the computational burden. The search returns architectures for a sound-event classification dataset based upon AudioSet with similar accuracy to MobileNetV1/V2 implementations but with an order of magnitude less energy per inference and a much smaller memory footprint.

The time and effort involved in hand-designing deep neural networks is immense. This has prompted the development of Neural Architecture Search (NAS) techniques to automate this design. However, NAS algorithms tend to be slow and expensive; they need to train vast numbers of candidate networks to inform the search process. This could be alleviated if we could partially predict a network's trained accuracy from its initial state. In this work, we examine the overlap of activations between datapoints in untrained networks and motivate how this can give a measure which is usefully indicative of a network's trained performance. We incorporate this measure into a simple algorithm that allows us to search for powerful networks without any training in a matter of seconds on a single GPU, and verify its effectiveness on NAS-Bench-101, NAS-Bench-201, NATS-Bench, and Network Design Spaces. Our approach can be readily combined with more expensive search methods; we examine a simple adaptation of regularised evolutionary search. Code for reproducing our experiments is available at //github.com/BayesWatch/nas-without-training.

While pre-trained language models (e.g., BERT) have achieved impressive results on different natural language processing tasks, they have large numbers of parameters and suffer from big computational and memory costs, which make them difficult for real-world deployment. Therefore, model compression is necessary to reduce the computation and memory cost of pre-trained models. In this work, we aim to compress BERT and address the following two challenging practical issues: (1) The compression algorithm should be able to output multiple compressed models with different sizes and latencies, in order to support devices with different memory and latency limitations; (2) The algorithm should be downstream task agnostic, so that the compressed models are generally applicable for different downstream tasks. We leverage techniques in neural architecture search (NAS) and propose NAS-BERT, an efficient method for BERT compression. NAS-BERT trains a big supernet on a search space containing a variety of architectures and outputs multiple compressed models with adaptive sizes and latency. Furthermore, the training of NAS-BERT is conducted on standard self-supervised pre-training tasks (e.g., masked language model) and does not depend on specific downstream tasks. Thus, the compressed models can be used across various downstream tasks. The technical challenge of NAS-BERT is that training a big supernet on the pre-training task is extremely costly. We employ several techniques including block-wise search, search space pruning, and performance approximation to improve search efficiency and accuracy. Extensive experiments on GLUE and SQuAD benchmark datasets demonstrate that NAS-BERT can find lightweight models with better accuracy than previous approaches, and can be directly applied to different downstream tasks with adaptive model sizes for different requirements of memory or latency.

One of the key steps in Neural Architecture Search (NAS) is to estimate the performance of candidate architectures. Existing methods either directly use the validation performance or learn a predictor to estimate the performance. However, these methods can be either computationally expensive or very inaccurate, which may severely affect the search efficiency and performance. Moreover, as it is very difficult to annotate architectures with accurate performance on specific tasks, learning a promising performance predictor is often non-trivial due to the lack of labeled data. In this paper, we argue that it may not be necessary to estimate the absolute performance for NAS. On the contrary, we may need only to understand whether an architecture is better than a baseline one. However, how to exploit this comparison information as the reward and how to well use the limited labeled data remains two great challenges. In this paper, we propose a novel Contrastive Neural Architecture Search (CTNAS) method which performs architecture search by taking the comparison results between architectures as the reward. Specifically, we design and learn a Neural Architecture Comparator (NAC) to compute the probability of candidate architectures being better than a baseline one. Moreover, we present a baseline updating scheme to improve the baseline iteratively in a curriculum learning manner. More critically, we theoretically show that learning NAC is equivalent to optimizing the ranking over architectures. Extensive experiments in three search spaces demonstrate the superiority of our CTNAS over existing methods.

An effective and efficient architecture performance evaluation scheme is essential for the success of Neural Architecture Search (NAS). To save computational cost, most of existing NAS algorithms often train and evaluate intermediate neural architectures on a small proxy dataset with limited training epochs. But it is difficult to expect an accurate performance estimation of an architecture in such a coarse evaluation way. This paper advocates a new neural architecture evaluation scheme, which aims to determine which architecture would perform better instead of accurately predict the absolute architecture performance. Therefore, we propose a \textbf{relativistic} architecture performance predictor in NAS (ReNAS). We encode neural architectures into feature tensors, and further refining the representations with the predictor. The proposed relativistic performance predictor can be deployed in discrete searching methods to search for the desired architectures without additional evaluation. Experimental results on NAS-Bench-101 dataset suggests that, sampling 424 ($0.1\%$ of the entire search space) neural architectures and their corresponding validation performance is already enough for learning an accurate architecture performance predictor. The accuracies of our searched neural architectures on NAS-Bench-101 and NAS-Bench-201 datasets are higher than that of the state-of-the-art methods and show the priority of the proposed method.

In this paper, we investigate a new variant of neural architecture search (NAS) paradigm -- searching with random labels (RLNAS). The task sounds counter-intuitive for most existing NAS algorithms since random label provides few information on the performance of each candidate architecture. Instead, we propose a novel NAS framework based on ease-of-convergence hypothesis, which requires only random labels during searching. The algorithm involves two steps: first, we train a SuperNet using random labels; second, from the SuperNet we extract the sub-network whose weights change most significantly during the training. Extensive experiments are evaluated on multiple datasets (e.g. NAS-Bench-201 and ImageNet) and multiple search spaces (e.g. DARTS-like and MobileNet-like). Very surprisingly, RLNAS achieves comparable or even better results compared with state-of-the-art NAS methods such as PC-DARTS, Single Path One-Shot, even though the counterparts utilize full ground truth labels for searching. We hope our finding could inspire new understandings on the essential of NAS.

To improve the search efficiency for Neural Architecture Search (NAS), One-shot NAS proposes to train a single super-net to approximate the performance of proposal architectures during search via weight-sharing. While this greatly reduces the computation cost, due to approximation error, the performance prediction by a single super-net is less accurate than training each proposal architecture from scratch, leading to search inefficiency. In this work, we propose few-shot NAS that explores the choice of using multiple super-nets: each super-net is pre-trained to be in charge of a sub-region of the search space. This reduces the prediction error of each super-net. Moreover, training these super-nets can be done jointly via sequential fine-tuning. A natural choice of sub-region is to follow the splitting of search space in NAS. We empirically evaluate our approach on three different tasks in NAS-Bench-201. Extensive results have demonstrated that few-shot NAS, using only 5 super-nets, significantly improves performance of many search methods with slight increase of search time. The architectures found by DARTs and ENAS with few-shot models achieved 88.53% and 86.50% test accuracy on CIFAR-10 in NAS-Bench-201, significantly outperformed their one-shot counterparts (with 54.30% and 54.30% test accuracy). Moreover, on AUTOGAN and DARTS, few-shot NAS also outperforms previously state-of-the-art models.

Automatic neural architecture design has shown its potential in discovering powerful neural network architectures. Existing methods, no matter based on reinforcement learning or evolutionary algorithms (EA), conduct architecture search in a discrete space, which is highly inefficient. In this paper, we propose a simple and efficient method to automatic neural architecture design based on continuous optimization. We call this new approach neural architecture optimization (NAO). There are three key components in our proposed approach: (1) An encoder embeds/maps neural network architectures into a continuous space. (2) A predictor takes the continuous representation of a network as input and predicts its accuracy. (3) A decoder maps a continuous representation of a network back to its architecture. The performance predictor and the encoder enable us to perform gradient based optimization in the continuous space to find the embedding of a new architecture with potentially better accuracy. Such a better embedding is then decoded to a network by the decoder. Experiments show that the architecture discovered by our method is very competitive for image classification task on CIFAR-10 and language modeling task on PTB, outperforming or on par with the best results of previous architecture search methods with a significantly reduction of computational resources. Specifically we obtain $2.07\%$ test set error rate for CIFAR-10 image classification task and $55.9$ test set perplexity of PTB language modeling task. The best discovered architectures on both tasks are successfully transferred to other tasks such as CIFAR-100 and WikiText-2.

Deep Learning has enabled remarkable progress over the last years on a variety of tasks, such as image recognition, speech recognition, and machine translation. One crucial aspect for this progress are novel neural architectures. Currently employed architectures have mostly been developed manually by human experts, which is a time-consuming and error-prone process. Because of this, there is growing interest in automated neural architecture search methods. We provide an overview of existing work in this field of research and categorize them according to three dimensions: search space, search strategy, and performance estimation strategy.

Designing convolutional neural networks (CNN) models for mobile devices is challenging because mobile models need to be small and fast, yet still accurate. Although significant effort has been dedicated to design and improve mobile models on all three dimensions, it is challenging to manually balance these trade-offs when there are so many architectural possibilities to consider. In this paper, we propose an automated neural architecture search approach for designing resource-constrained mobile CNN models. We propose to explicitly incorporate latency information into the main objective so that the search can identify a model that achieves a good trade-off between accuracy and latency. Unlike in previous work, where mobile latency is considered via another, often inaccurate proxy (e.g., FLOPS), in our experiments, we directly measure real-world inference latency by executing the model on a particular platform, e.g., Pixel phones. To further strike the right balance between flexibility and search space size, we propose a novel factorized hierarchical search space that permits layer diversity throughout the network. Experimental results show that our approach consistently outperforms state-of-the-art mobile CNN models across multiple vision tasks. On the ImageNet classification task, our model achieves 74.0% top-1 accuracy with 76ms latency on a Pixel phone, which is 1.5x faster than MobileNetV2 (Sandler et al. 2018) and 2.4x faster than NASNet (Zoph et al. 2018) with the same top-1 accuracy. On the COCO object detection task, our model family achieves both higher mAP quality and lower latency than MobileNets.

北京阿比特科技有限公司