亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

A cloud scheduler packs tasks onto machines with contradictory goals of (1) using the machines as efficiently as possible while (2) avoiding overloading that might result in CPU throttling or out-of-memory errors. We take a stochastic approach that models the uncertainty of tasks' resource requirements by random variables. We focus on a little-explored case of items, each having a Bernoulli distribution that corresponds to tasks that are either idle or need a certain CPU share. RPAP, our online approximation algorithm, upper-bounds a subset of items by Poisson distributions. Unlike existing algorithms for Bernoulli items that prove the approximation ratio only up to a multiplicative constant, we provide a closed-form expression. We derive RPAPC, a combined approach having the same theoretical guarantees as RPAP. In simulations, RPAPC's results are close to FFR, a greedy heuristic with no worst-case guarantees; RPAPC slightly outperforms FFR on datasets with small items.

相關內容

Typical leg exoskeletons employ open-loop kinematic chains with motors placed directly on movable joints; while this design offers flexibility, it leads to increased costs and heightened control complexity due to the high number of degrees of freedom. The use of heavy servo-motors to handle torque in active joints results in complex and bulky designs, as highlighted in existing literature. In this study, we introduced a novel synthesis method with analytical solutions provided for synthesizing lower-limb exoskeleton. Additionally, we have incorporated multicriteria optimization by six designing criteria. As a result, we offer several mechanisms, comprising only six links, well-suited to the human anatomical structure, exhibit superior trajectory accuracy, efficient force transmission, satisfactory step height, and having internal transfer segment of the foot.

To protect cryptographic implementations from side-channel vulnerabilities, developers must adopt constant-time programming practices. As these can be error-prone, many side-channel detection tools have been proposed. Despite this, such vulnerabilities are still manually found in cryptographic libraries. While a recent paper by Jancar et al. shows that developers rarely perform side-channel detection, it is unclear if existing detection tools could have found these vulnerabilities in the first place. To answer this question, we surveyed the literature to build a classification of 34 side-channel detection frameworks. The classification we offer compares multiple criteria, including the methods used, the scalability of the analysis or the threat model considered. We then built a unified common benchmark of representative cryptographic operations on a selection of 5 promising detection tools. This benchmark allows us to better compare the capabilities of each tool, and the scalability of their analysis. Additionally, we offer a classification of recently published side-channel vulnerabilities. We then test each of the selected tools on benchmarks reproducing a subset of these vulnerabilities as well as the context in which they appear. We find that existing tools can struggle to find vulnerabilities for a variety of reasons, mainly the lack of support for SIMD instructions, implicit flows, and internal secret generation. Based on our findings, we develop a set of recommendations for the research community and cryptographic library developers, with the goal to improve the effectiveness of side-channel detection tools.

Learning the distribution of data on Riemannian manifolds is crucial for modeling data from non-Euclidean space, which is required by many applications from diverse scientific fields. Yet, existing generative models on manifolds suffer from expensive divergence computation or rely on approximations of heat kernel. These limitations restrict their applicability to simple geometries and hinder scalability to high dimensions. In this work, we introduce the Riemannian Diffusion Mixture, a principled framework for building a generative process on manifolds as a mixture of endpoint-conditioned diffusion processes instead of relying on the denoising approach of previous diffusion models, for which the generative process is characterized by its drift guiding toward the most probable endpoint with respect to the geometry of the manifold. We further propose a simple yet efficient training objective for learning the mixture process, that is readily applicable to general manifolds. Our method outperforms previous generative models on various manifolds while scaling to high dimensions and requires a dramatically reduced number of in-training simulation steps for general manifolds.

Soft robotics is an emergent and swiftly evolving field. Pneumatic actuators are suitable for driving soft robots because of their superior performance. However, their control is not easy due to their hysteresis characteristics. In response to these challenges, we propose an adaptive control method to compensate hysteresis of a soft actuator. Employing a novel dual pneumatic artificial muscle (PAM) bending actuator, the innovative control strategy abates hysteresis effects by dynamically modulating gains within a traditional PID controller corresponding with the predicted motion of the reference trajectory. Through comparative experimental evaluation, we found that the new control method outperforms its conventional counterparts regarding tracking accuracy and response speed. Our work reveals a new direction for advancing control in soft actuators.

The machine learning of lattice operators has three possible bottlenecks. From a statistical standpoint, it is necessary to design a constrained class of operators based on prior information with low bias, and low complexity relative to the sample size. From a computational perspective, there should be an efficient algorithm to minimize an empirical error over the class. From an understanding point of view, the properties of the learned operator need to be derived, so its behavior can be theoretically understood. The statistical bottleneck can be overcome due to the rich literature about the representation of lattice operators, but there is no general learning algorithm for them. In this paper, we discuss a learning paradigm in which, by overparametrizing a class via elements in a lattice, an algorithm for minimizing functions in a lattice is applied to learn. We present the stochastic lattice gradient descent algorithm as a general algorithm to learn on constrained classes of operators as long as a lattice overparametrization of it is fixed, and we discuss previous works which are proves of concept. Moreover, if there are algorithms to compute the basis of an operator from its overparametrization, then its properties can be deduced and the understanding bottleneck is also overcome. This learning paradigm has three properties that modern methods based on neural networks lack: control, transparency and interpretability. Nowadays, there is an increasing demand for methods with these characteristics, and we believe that mathematical morphology is in a unique position to supply them. The lattice overparametrization paradigm could be a missing piece for it to achieve its full potential within modern machine learning.

In pace with developments in the research field of artificial intelligence, knowledge graphs (KGs) have attracted a surge of interest from both academia and industry. As a representation of semantic relations between entities, KGs have proven to be particularly relevant for natural language processing (NLP), experiencing a rapid spread and wide adoption within recent years. Given the increasing amount of research work in this area, several KG-related approaches have been surveyed in the NLP research community. However, a comprehensive study that categorizes established topics and reviews the maturity of individual research streams remains absent to this day. Contributing to closing this gap, we systematically analyzed 507 papers from the literature on KGs in NLP. Our survey encompasses a multifaceted review of tasks, research types, and contributions. As a result, we present a structured overview of the research landscape, provide a taxonomy of tasks, summarize our findings, and highlight directions for future work.

Sampling methods (e.g., node-wise, layer-wise, or subgraph) has become an indispensable strategy to speed up training large-scale Graph Neural Networks (GNNs). However, existing sampling methods are mostly based on the graph structural information and ignore the dynamicity of optimization, which leads to high variance in estimating the stochastic gradients. The high variance issue can be very pronounced in extremely large graphs, where it results in slow convergence and poor generalization. In this paper, we theoretically analyze the variance of sampling methods and show that, due to the composite structure of empirical risk, the variance of any sampling method can be decomposed into \textit{embedding approximation variance} in the forward stage and \textit{stochastic gradient variance} in the backward stage that necessities mitigating both types of variance to obtain faster convergence rate. We propose a decoupled variance reduction strategy that employs (approximate) gradient information to adaptively sample nodes with minimal variance, and explicitly reduces the variance introduced by embedding approximation. We show theoretically and empirically that the proposed method, even with smaller mini-batch sizes, enjoys a faster convergence rate and entails a better generalization compared to the existing methods.

Neural machine translation (NMT) is a deep learning based approach for machine translation, which yields the state-of-the-art translation performance in scenarios where large-scale parallel corpora are available. Although the high-quality and domain-specific translation is crucial in the real world, domain-specific corpora are usually scarce or nonexistent, and thus vanilla NMT performs poorly in such scenarios. Domain adaptation that leverages both out-of-domain parallel corpora as well as monolingual corpora for in-domain translation, is very important for domain-specific translation. In this paper, we give a comprehensive survey of the state-of-the-art domain adaptation techniques for NMT.

Object detection typically assumes that training and test data are drawn from an identical distribution, which, however, does not always hold in practice. Such a distribution mismatch will lead to a significant performance drop. In this work, we aim to improve the cross-domain robustness of object detection. We tackle the domain shift on two levels: 1) the image-level shift, such as image style, illumination, etc, and 2) the instance-level shift, such as object appearance, size, etc. We build our approach based on the recent state-of-the-art Faster R-CNN model, and design two domain adaptation components, on image level and instance level, to reduce the domain discrepancy. The two domain adaptation components are based on H-divergence theory, and are implemented by learning a domain classifier in adversarial training manner. The domain classifiers on different levels are further reinforced with a consistency regularization to learn a domain-invariant region proposal network (RPN) in the Faster R-CNN model. We evaluate our newly proposed approach using multiple datasets including Cityscapes, KITTI, SIM10K, etc. The results demonstrate the effectiveness of our proposed approach for robust object detection in various domain shift scenarios.

Dynamic programming (DP) solves a variety of structured combinatorial problems by iteratively breaking them down into smaller subproblems. In spite of their versatility, DP algorithms are usually non-differentiable, which hampers their use as a layer in neural networks trained by backpropagation. To address this issue, we propose to smooth the max operator in the dynamic programming recursion, using a strongly convex regularizer. This allows to relax both the optimal value and solution of the original combinatorial problem, and turns a broad class of DP algorithms into differentiable operators. Theoretically, we provide a new probabilistic perspective on backpropagating through these DP operators, and relate them to inference in graphical models. We derive two particular instantiations of our framework, a smoothed Viterbi algorithm for sequence prediction and a smoothed DTW algorithm for time-series alignment. We showcase these instantiations on two structured prediction tasks and on structured and sparse attention for neural machine translation.

北京阿比特科技有限公司