In a minimum cost submodular cover problem (MinSMC), given a monotone non-decreasing submodular function $f\colon 2^V \rightarrow \mathbb{Z}^+$, a cost function $c: V\rightarrow \mathbb R^{+}$, an integer $k\leq f(V)$, the goal is to find a subset $A\subseteq V$ with the minimum cost such that $f(A)\geq k$. MinSMC has a lot of applications in machine learning and data mining. In this paper, we design a parallel algorithm for MinSMC which obtains a solution with approximation ratio at most $\frac{H(\min\{\Delta,k\})}{1-5\varepsilon}$ with probability $1-3\varepsilon$ in $O(\frac{\log m\log n\log^2 mn}{\varepsilon^4})$ rounds, where $\Delta=\max_{v\in V}f(v)$, $H(\cdot)$ is the Hamornic number, $n=f(V)$, $m=|V|$ and $\varepsilon$ is a constant in $(0,\frac{1}{5})$. This is the first paper obtaining a parallel algorithm for the weighted version of the MinSMC problem with an approximation ratio arbitrarily close to $H(\min\{\Delta,k\})$.
Consider the rank-1 spiked model: $\bf{X}=\sqrt{\nu}\xi \bf{u}+ \bf{Z}$, where $\nu$ is the spike intensity, $\bf{u}\in\mathbb{S}^{k-1}$ is an unknown direction and $\xi\sim \mathcal{N}(0,1),\bf{Z}\sim \mathcal{N}(\bf{0},\bf{I})$. Motivated by recent advances in analog-to-digital conversion, we study the problem of recovering $\bf{u}\in \mathbb{S}^{k-1}$ from $n$ i.i.d. modulo-reduced measurements $\bf{Y}=[\bf{X}]\mod \Delta$, focusing on the high-dimensional regime ($k\gg 1$). We develop and analyze an algorithm that, for most directions $\bf{u}$ and $\nu=\mathrm{poly}(k)$, estimates $\bf{u}$ to high accuracy using $n=\mathrm{poly}(k)$ measurements, provided that $\Delta\gtrsim \sqrt{\log k}$. Up to constants, our algorithm accurately estimates $\bf{u}$ at the smallest possible $\Delta$ that allows (in an information-theoretic sense) to recover $\bf{X}$ from $\bf{Y}$. A key step in our analysis involves estimating the probability that a line segment of length $\approx\sqrt{\nu}$ in a random direction $\bf{u}$ passes near a point in the lattice $\Delta \mathbb{Z}^k$. Numerical experiments show that the developed algorithm performs well even in a non-asymptotic setting.
We study the problem of finding approximate first-order stationary points in optimization problems of the form $\min_{x \in X} \max_{y \in Y} f(x,y)$, where the sets $X,Y$ are convex and $Y$ is compact. The objective function $f$ is smooth, but assumed neither convex in $x$ nor concave in $y$. Our approach relies upon replacing the function $f(x,\cdot)$ with its $k$th order Taylor approximation (in $y$) and finding a near-stationary point in the resulting surrogate problem. To guarantee its success, we establish the following result: let the Euclidean diameter of $Y$ be small in terms of the target accuracy $\varepsilon$, namely $O(\varepsilon^{\frac{2}{k+1}})$ for $k \in \mathbb{N}$ and $O(\varepsilon)$ for $k = 0$, with the constant factors controlled by certain regularity parameters of $f$; then any $\varepsilon$-stationary point in the surrogate problem remains $O(\varepsilon)$-stationary for the initial problem. Moreover, we show that these upper bounds are nearly optimal: the aforementioned reduction provably fails when the diameter of $Y$ is larger. For $0 \le k \le 2$ the surrogate function can be efficiently maximized in $y$; our general approximation result then leads to efficient algorithms for finding a near-stationary point in nonconvex-nonconcave min-max problems, for which we also provide convergence guarantees.
Let $\mathbf{X} = (X_i)_{1\leq i \leq n}$ be an i.i.d. sample of square-integrable variables in $\mathbb{R}^d$, \GB{with common expectation $\mu$ and covariance matrix $\Sigma$, both unknown.} We consider the problem of testing if $\mu$ is $\eta$-close to zero, i.e. $\|\mu\| \leq \eta $ against $\|\mu\| \geq (\eta + \delta)$; we also tackle the more general two-sample mean closeness (also known as {\em relevant difference}) testing problem. The aim of this paper is to obtain nonasymptotic upper and lower bounds on the minimal separation distance $\delta$ such that we can control both the Type I and Type II errors at a given level. The main technical tools are concentration inequalities, first for a suitable estimator of $\|\mu\|^2$ used a test statistic, and secondly for estimating the operator and Frobenius norms of $\Sigma$ coming into the quantiles of said test statistic. These properties are obtained for Gaussian and bounded distributions. A particular attention is given to the dependence in the pseudo-dimension $d_*$ of the distribution, defined as $d_* := \|\Sigma\|_2^2/\|\Sigma\|_\infty^2$. In particular, for $\eta=0$, the minimum separation distance is ${\Theta}( d_*^{\frac{1}{4}}\sqrt{\|\Sigma\|_\infty/n})$, in contrast with the minimax estimation distance for $\mu$, which is ${\Theta}(d_e^{\frac{1}{2}}\sqrt{\|\Sigma\|_\infty/n})$ (where $d_e:=\|\Sigma\|_1/\|\Sigma\|_\infty$). This generalizes a phenomenon spelled out in particular by Baraud (2002).
Given a fixed finite metric space $(V,\mu)$, the {\em minimum $0$-extension problem}, denoted as ${\tt 0\mbox{-}Ext}[\mu]$, is equivalent to the following optimization problem: minimize function of the form $\min\limits_{x\in V^n} \sum_i f_i(x_i) + \sum_{ij}c_{ij}\mu(x_i,x_j)$ where $c_{ij},c_{vi}$ are given nonnegative costs and $f_i:V\rightarrow \mathbb R$ are functions given by $f_i(x_i)=\sum_{v\in V}c_{vi}\mu(x_i,v)$. The computational complexity of ${\tt 0\mbox{-}Ext}[\mu]$ has been recently established by Karzanov and by Hirai: if metric $\mu$ is {\em orientable modular} then ${\tt 0\mbox{-}Ext}[\mu]$ can be solved in polynomial time, otherwise ${\tt 0\mbox{-}Ext}[\mu]$ is NP-hard. To prove the tractability part, Hirai developed a theory of discrete convex functions on orientable modular graphs generalizing several known classes of functions in discrete convex analysis, such as $L^\natural$-convex functions. We consider a more general version of the problem in which unary functions $f_i(x_i)$ can additionally have terms of the form $c_{uv;i}\mu(x_i,\{u,v\})$ for $\{u,v\}\in F$, where set $F\subseteq\binom{V}{2}$ is fixed. We extend the complexity classification above by providing an explicit condition on $(\mu,F)$ for the problem to be tractable. In order to prove the tractability part, we generalize Hirai's theory and define a larger class of discrete convex functions. It covers, in particular, another well-known class of functions, namely submodular functions on an integer lattice. Finally, we improve the complexity of Hirai's algorithm for solving ${\tt 0\mbox{-}Ext}[\mu]$ on orientable modular graphs.
We present a quasilinear time algorithm to decide the word problem on a natural algebraic structures we call orthocomplemented bisemilattices, a subtheory of boolean algebra. We use as a base a variation of Hopcroft, Ullman and Aho algorithm for tree isomorphism which we combine with a term rewriting system to decide equivalence of two terms. We prove that the rewriting system is terminating and confluent and hence the existence of a normal form, and that our algorithm is computing it. We also discuss applications and present an effective implementation in Scala.
We consider the numerical taxonomy problem of fitting a positive distance function ${D:{S\choose 2}\rightarrow \mathbb R_{>0}}$ by a tree metric. We want a tree $T$ with positive edge weights and including $S$ among the vertices so that their distances in $T$ match those in $D$. A nice application is in evolutionary biology where the tree $T$ aims to approximate the branching process leading to the observed distances in $D$ [Cavalli-Sforza and Edwards 1967]. We consider the total error, that is the sum of distance errors over all pairs of points. We present a deterministic polynomial time algorithm minimizing the total error within a constant factor. We can do this both for general trees, and for the special case of ultrametrics with a root having the same distance to all vertices in $S$. The problems are APX-hard, so a constant factor is the best we can hope for in polynomial time. The best previous approximation factor was $O((\log n)(\log \log n))$ by Ailon and Charikar [2005] who wrote "Determining whether an $O(1)$ approximation can be obtained is a fascinating question".
We prove new optimality results for adaptive mesh refinement algorithms for non-symmetric, indefinite, and time-dependent problems by proposing a generalization of quasi-orthogonality which follows directly from the inf-sup stability of the underlying problem. This completely removes a central technical difficulty in modern proofs of optimal convergence of adaptive mesh refinement algorithms and leads to simple optimality proofs for the Taylor-Hood discretization of the stationary Stokes problem, a finite-element/boundary-element discretization of an unbounded transmission problem, and an adaptive time-stepping scheme for parabolic equations. The main technical tool are new stability bounds for the $LU$-factorization of matrices together with a recently established connection between quasi-orthogonality and matrix factorization.
We present a $(1+\frac{k}{k+2})$-approximation algorithm for the Maximum $k$-dependent Set problem on bipartite graphs for any $k\ge1$. For a graph with $n$ vertices and $m$ edges, the algorithm runs in $O(k m \sqrt{n})$ time and improves upon the previously best-known approximation ratio of $1+\frac{k}{k+1}$ established by Kumar et al. [Theoretical Computer Science, 526: 90--96 (2014)]. Our proof also indicates that the algorithm retains its approximation ratio when applied to the (more general) class of K\"{o}nig-Egerv\'{a}ry graphs.
In this work, we consider the distributed optimization of non-smooth convex functions using a network of computing units. We investigate this problem under two regularity assumptions: (1) the Lipschitz continuity of the global objective function, and (2) the Lipschitz continuity of local individual functions. Under the local regularity assumption, we provide the first optimal first-order decentralized algorithm called multi-step primal-dual (MSPD) and its corresponding optimal convergence rate. A notable aspect of this result is that, for non-smooth functions, while the dominant term of the error is in $O(1/\sqrt{t})$, the structure of the communication network only impacts a second-order term in $O(1/t)$, where $t$ is time. In other words, the error due to limits in communication resources decreases at a fast rate even in the case of non-strongly-convex objective functions. Under the global regularity assumption, we provide a simple yet efficient algorithm called distributed randomized smoothing (DRS) based on a local smoothing of the objective function, and show that DRS is within a $d^{1/4}$ multiplicative factor of the optimal convergence rate, where $d$ is the underlying dimension.
The Normalized Cut (NCut) objective function, widely used in data clustering and image segmentation, quantifies the cost of graph partitioning in a way that biases clusters or segments that are balanced towards having lower values than unbalanced partitionings. However, this bias is so strong that it avoids any singleton partitions, even when vertices are very weakly connected to the rest of the graph. Motivated by the B\"uhler-Hein family of balanced cut costs, we propose the family of Compassionately Conservative Balanced (CCB) Cut costs, which are indexed by a parameter that can be used to strike a compromise between the desire to avoid too many singleton partitions and the notion that all partitions should be balanced. We show that CCB-Cut minimization can be relaxed into an orthogonally constrained $\ell_{\tau}$-minimization problem that coincides with the problem of computing Piecewise Flat Embeddings (PFE) for one particular index value, and we present an algorithm for solving the relaxed problem by iteratively minimizing a sequence of reweighted Rayleigh quotients (IRRQ). Using images from the BSDS500 database, we show that image segmentation based on CCB-Cut minimization provides better accuracy with respect to ground truth and greater variability in region size than NCut-based image segmentation.