亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

This work presents a study of Kolmogorov complexity for general quantum states from the perspective of deterministic-control quantum Turing Machines (dcq-TM). We extend the dcq-TM model to incorporate mixed state inputs and outputs, and define dcq-computable states as those that can be approximated by a dcq-TM. Moreover, we introduce (conditional) Kolmogorov complexity of quantum states and use it to study three particular aspects of the algorithmic information contained in a quantum state: a comparison of the information in a quantum state with that of its classical representation as an array of real numbers, an exploration of the limits of quantum state copying in the context of algorithmic complexity, and study of the complexity of correlations in quantum systems, resulting in a correlation-aware definition for algorithmic mutual information that satisfies symmetry of information property.

相關內容

《計算機信息》雜志發表高質量的論文,擴大了運籌學和計算的范圍,尋求有關理論、方法、實驗、系統和應用方面的原創研究論文、新穎的調查和教程論文,以及描述新的和有用的軟件工具的論文。官網鏈接: · 平滑 · 近似 · Principle · 不變 ·
2024 年 2 月 28 日

We propose a new class of finite element approximations to ideal compressible magnetohydrodynamic equations in smooth regime. Following variational approximations developed for fluid models in the last decade, our discretizations are built via a discrete variational principle mimicking the continuous Euler-Poincar\'e principle, and to further exploit the geometrical structure of the problem, vector fields are represented by their action as Lie derivatives on differential forms of any degree. The resulting semi-discrete approximations are shown to conserve the total mass, entropy and energy of the solutions for a wide class of finite element approximations. In addition, the divergence-free nature of the magnetic field is preserved in a pointwise sense and a time discretization is proposed, preserving those invariants and giving a reversible scheme at the fully discrete level. Numerical simulations are conducted to verify the accuracy of our approach and its ability to preserve the invariants for several test problems.

We propose a numerical algorithm for the computation of multi-marginal optimal transport (MMOT) problems involving general measures that are not necessarily discrete. By developing a relaxation scheme in which marginal constraints are replaced by finitely many linear constraints and by proving a specifically tailored duality result for this setting, we approximate the MMOT problem by a linear semi-infinite optimization problem. Moreover, we are able to recover a feasible and approximately optimal solution of the MMOT problem, and its sub-optimality can be controlled to be arbitrarily close to 0 under mild conditions. The developed relaxation scheme leads to a numerical algorithm which can compute a feasible approximate optimizer of the MMOT problem whose theoretical sub-optimality can be chosen to be arbitrarily small. Besides the approximate optimizer, the algorithm is also able to compute both an upper bound and a lower bound on the optimal value of the MMOT problem. The difference between the computed bounds provides an explicit upper bound on the sub-optimality of the computed approximate optimizer. Through a numerical example, we demonstrate that the proposed algorithm is capable of computing a high-quality solution of an MMOT problem involving as many as 50 marginals along with an explicit estimate of its sub-optimality that is much less conservative compared to the theoretical estimate.

We analyze the Schr\"odingerisation method for quantum simulation of a general class of non-unitary dynamics with inhomogeneous source terms. The Schr\"odingerisation technique, introduced in \cite{JLY22a,JLY23}, transforms any linear ordinary and partial differential equations with non-unitary dynamics into a system under unitary dynamics via a warped phase transition that maps the equations into a higher dimension, making them suitable for quantum simulation. This technique can also be applied to these equations with inhomogeneous terms modeling source or forcing terms or boundary and interface conditions, and discrete dynamical systems such as iterative methods in numerical linear algebra, through extra equations in the system. Difficulty airses with the presense of inhomogeneous terms since it can change the stability of the original system. In this paper, we systematically study--both theoretically and numerically--the important issue of recovering the original variables from the Schr\"odingerized equations, even when the evolution operator contains unstable modes. We show that even with unstable modes, one can still construct a stable scheme, yet to recover the original variable one needs to use suitable data in the extended space. We analyze and compare both the discrete and continuous Fourier transforms used in the extended dimension, and derive corresponding error estimates, which allows one to use the more appropriate transform for specific equations. We also provide a smoother initialization for the Schrod\"odingerized system to gain higher order accuracy in the extended space. We homogenize the inhomogeneous terms with a stretch transformation, making it easier to recover the original variable. Our recovering technique also provides a simple and generic framework to solve general ill-posed problems in a computationally stable way.

In this work, the high order accuracy and the well-balanced (WB) properties of some novel continuous interior penalty (CIP) stabilizations for the Shallow Water (SW) equations are investigated. The underlying arbitrary high order numerical framework is given by a Residual Distribution (RD)/continuous Galerkin (CG) finite element method (FEM) setting for the space discretization coupled with a Deferred Correction (DeC) time integration, to have a fully-explicit scheme. If, on the one hand, the introduced CIP stabilizations are all specifically designed to guarantee the exact preservation of the lake at rest steady state, on the other hand, some of them make use of general structures to tackle the preservation of general steady states, whose explicit analytical expression is not known. Several basis functions have been considered in the numerical experiments and, in all cases, the numerical results confirm the high order accuracy and the ability of the novel stabilizations to exactly preserve the lake at rest steady state and to capture small perturbations of such equilibrium. Moreover, some of them, based on the notions of space residual and global flux, have shown very good performances and superconvergences in the context of general steady solutions not known in closed-form. Many elements introduced here can be extended to other hyperbolic systems, e.g., to the Euler equations with gravity.

This essay provides a comprehensive analysis of the optimization and performance evaluation of various routing algorithms within the context of computer networks. Routing algorithms are critical for determining the most efficient path for data transmission between nodes in a network. The efficiency, reliability, and scalability of a network heavily rely on the choice and optimization of its routing algorithm. This paper begins with an overview of fundamental routing strategies, including shortest path, flooding, distance vector, and link state algorithms, and extends to more sophisticated techniques.

Quantum-inspired classical algorithms provide us with a new way to understand the computational power of quantum computers for practically-relevant problems, especially in machine learning. In the past several years, numerous efficient algorithms for various tasks have been found, while an analysis of lower bounds is still missing. Using communication complexity, in this work we propose the first method to study lower bounds for these tasks. We mainly focus on lower bounds for solving linear regressions, supervised clustering, principal component analysis, recommendation systems, and Hamiltonian simulations. More precisely, we show that for linear regressions, in the row-sparse case, the lower bound is quadratic in the Frobenius norm of the underlying matrix, which is tight. In the dense case, with an extra assumption on the accuracy we obtain that the lower bound is quartic in the Frobenius norm, which matches the upper bound. For supervised clustering, we obtain a tight lower bound that is quartic in the Frobenius norm. For the other three tasks, we obtain a lower bound that is quadratic in the Frobenius norm, and the known upper bound is quartic in the Frobenius norm. Through this research, we find that large quantum speedup can exist for sparse, high-rank, well-conditioned matrix-related problems. Finally, we extend our method to study lower bounds analysis of quantum query algorithms for matrix-related problems. Some applications are given.

We prove explicit uniform two-sided bounds for the phase functions of Bessel functions and of their derivatives. As a consequence, we obtain new enclosures for the zeros of Bessel functions and their derivatives in terms of inverse values of some elementary functions. These bounds are valid, with a few exceptions, for all zeros and all Bessel functions with non-negative indices. We provide numerical evidence showing that our bounds either improve or closely match the best previously known ones.

In this paper, we develop a new type of Runge--Kutta (RK) discontinuous Galerkin (DG) method for solving hyperbolic conservation laws. Compared with the original RKDG method, the new method features improved compactness and allows simple boundary treatment. The key idea is to hybridize two different spatial operators in an explicit RK scheme, utilizing local projected derivatives for inner RK stages and the usual DG spatial discretization for the final stage only. Limiters are applied only at the final stage for the control of spurious oscillations. We also explore the connections between our method and Lax--Wendroff DG schemes and ADER-DG schemes. Numerical examples are given to confirm that the new RKDG method is as accurate as the original RKDG method, while being more compact, for problems including two-dimensional Euler equations for compressible gas dynamics.

In this paper, we present a novel class of high-order Runge--Kutta (RK) discontinuous Galerkin (DG) schemes for hyperbolic conservation laws. The new method extends beyond the traditional method of lines framework and utilizes stage-dependent polynomial spaces for the spatial discretization operators. To be more specific, two different DG operators, associated with $\mathcal{P}^k$ and $\mathcal{P}^{k-1}$ piecewise polynomial spaces, are used at different RK stages. The resulting method is referred to as the sdRKDG method. It features fewer floating-point operations and may achieve larger time step sizes. For problems without sonic points, we observe optimal convergence for all the sdRKDG schemes; and for problems with sonic points, we observe that a subset of the sdRKDG schemes remains optimal. We have also conducted von Neumann analysis for the stability and error of the sdRKDG schemes for the linear advection equation in one dimension. Numerical tests, for problems including two-dimensional Euler equations for gas dynamics, are provided to demonstrate the performance of the new method.

We propose a novel algorithm for the support estimation of partially known Gaussian graphical models that incorporates prior information about the underlying graph. In contrast to classical approaches that provide a point estimate based on a maximum likelihood or a maximum a posteriori criterion using (simple) priors on the precision matrix, we consider a prior on the graph and rely on annealed Langevin diffusion to generate samples from the posterior distribution. Since the Langevin sampler requires access to the score function of the underlying graph prior, we use graph neural networks to effectively estimate the score from a graph dataset (either available beforehand or generated from a known distribution). Numerical experiments demonstrate the benefits of our approach.

北京阿比特科技有限公司