亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

When selecting committees based on preferences of voters, a variety of different criteria can be considered. Two natural objectives are maximizing the utilitarian welfare (the sum of voters' utilities) and coverage (the number of represented voters) of the selected committee. Previous work has studied the impact on utilitarian welfare and coverage when requiring the committee to satisfy minimal requirements such as justified representation or weak proportionality. In this paper, we consider the impact of imposing much more demanding proportionality axioms. We identify a class of voting rules that achieve strong guarantees on utilitarian welfare and coverage when combined with appropriate completions. This class is defined via a weakening of priceability and contains prominent rules such as the Method of Equal Shares. We show that committees selected by these rules (i) can be completed to achieve optimal coverage and (ii) can be completed to achieve an asymptotically optimal approximation to the utilitarian welfare if they additionally satisfy EJR+. Answering an open question of Elkind et al. (2022), we use the Greedy Justified Candidate Rule to obtain the best possible utilitarian guarantee subject to proportionality. We also consider completion methods suggested in the participatory budgeting literature and other objectives besides welfare and coverage.

相關內容

Speech contains rich information on the emotions of humans, and Speech Emotion Recognition (SER) has been an important topic in the area of human-computer interaction. The robustness of SER models is crucial, particularly in privacy-sensitive and reliability-demanding domains like private healthcare. Recently, the vulnerability of deep neural networks in the audio domain to adversarial attacks has become a popular area of research. However, prior works on adversarial attacks in the audio domain primarily rely on iterative gradient-based techniques, which are time-consuming and prone to overfitting the specific threat model. Furthermore, the exploration of sparse perturbations, which have the potential for better stealthiness, remains limited in the audio domain. To address these challenges, we propose a generator-based attack method to generate sparse and transferable adversarial examples to deceive SER models in an end-to-end and efficient manner. We evaluate our method on two widely-used SER datasets, Database of Elicited Mood in Speech (DEMoS) and Interactive Emotional dyadic MOtion CAPture (IEMOCAP), and demonstrate its ability to generate successful sparse adversarial examples in an efficient manner. Moreover, our generated adversarial examples exhibit model-agnostic transferability, enabling effective adversarial attacks on advanced victim models.

Post-training quantization (PTQ) has played a key role in compressing large language models (LLMs) with ultra-low costs. However, existing PTQ methods only focus on handling the outliers within one layer or one block, which ignores the dependency of blocks and leads to severe performance degradation in low-bit settings. In this paper, we propose CBQ, a cross-block reconstruction-based PTQ method for LLMs. CBQ employs a cross-block dependency using a homologous reconstruction scheme, establishing long-range dependencies across multiple blocks to minimize error accumulation. Furthermore, CBQ incorporates a coarse-to-fine preprocessing (CFP) strategy for suppressing weight and activation outliers, coupled with an adaptive LoRA-Rounding technique for precise weight quantization. These innovations enable CBQ to not only handle extreme outliers effectively but also improve overall quantization accuracy. Extensive experiments show that CBQ achieves superior low-bit quantization (W4A4, W4A8, W2A16) and outperforms existing state-of-the-art methods across various LLMs and datasets. Notably, CBQ quantizes the 4-bit LLAMA1-65B model within only 4.3 hours on a single GPU, achieving a commendable tradeoff between performance and quantization efficiency.

We present a comprehensive survey of the advancements and techniques in the field of tractable probabilistic generative modeling, primarily focusing on Probabilistic Circuits (PCs). We provide a unified perspective on the inherent trade-offs between expressivity and the tractability, highlighting the design principles and algorithmic extensions that have enabled building expressive and efficient PCs, and provide a taxonomy of the field. We also discuss recent efforts to build deep and hybrid PCs by fusing notions from deep neural models, and outline the challenges and open questions that can guide future research in this evolving field.

Existing learned video compression models employ flow net or deformable convolutional networks (DCN) to estimate motion information. However, the limited receptive fields of flow net and DCN inherently direct their attentiveness towards the local contexts. Global contexts, such as large-scale motions and global correlations among frames are ignored, presenting a significant bottleneck for capturing accurate motions. To address this issue, we propose a joint local and global motion compensation module (LGMC) for leaned video coding. More specifically, we adopt flow net for local motion compensation. To capture global context, we employ the cross attention in feature domain for motion compensation. In addition, to avoid the quadratic complexity of vanilla cross attention, we divide the softmax operations in attention into two independent softmax operations, leading to linear complexity. To validate the effectiveness of our proposed LGMC, we integrate it with DCVC-TCM and obtain learned video compression with joint local and global motion compensation (LVC-LGMC). Extensive experiments demonstrate that our LVC-LGMC has significant rate-distortion performance improvements over baseline DCVC-TCM.

We consider (stochastic) subgradient methods for strongly convex but potentially nonsmooth non-Lipschitz optimization. We provide new equivalent dual descriptions (in the style of dual averaging) for the classic subgradient method, the proximal subgradient method, and the switching subgradient method. These equivalences enable $O(1/T)$ convergence guarantees in terms of both their classic primal gap and a not previously analyzed dual gap for strongly convex optimization. Consequently, our theory provides these classic methods with simple, optimal stopping criteria and optimality certificates at no added computational cost. Our results apply to a wide range of stepsize selections and of non-Lipschitz ill-conditioned problems where the early iterations of the subgradient method may diverge exponentially quickly (a phenomenon which, to the best of our knowledge, no prior works address). Even in the presence of such undesirable behaviors, our theory still ensures and bounds eventual convergence.

Large language models (LLMs) have significantly advanced the field of natural language processing (NLP), providing a highly useful, task-agnostic foundation for a wide range of applications. The great promise of LLMs as general task solvers motivated people to extend their functionality largely beyond just a ``chatbot'', and use it as an assistant or even replacement for domain experts and tools in specific domains such as healthcare, finance, and education. However, directly applying LLMs to solve sophisticated problems in specific domains meets many hurdles, caused by the heterogeneity of domain data, the sophistication of domain knowledge, the uniqueness of domain objectives, and the diversity of the constraints (e.g., various social norms, cultural conformity, religious beliefs, and ethical standards in the domain applications). To fill such a gap, explosively-increase research, and practices have been conducted in very recent years on the domain specialization of LLMs, which, however, calls for a comprehensive and systematic review to better summarizes and guide this promising domain. In this survey paper, first, we propose a systematic taxonomy that categorizes the LLM domain-specialization techniques based on the accessibility to LLMs and summarizes the framework for all the subcategories as well as their relations and differences to each other. We also present a comprehensive taxonomy of critical application domains that can benefit from specialized LLMs, discussing their practical significance and open challenges. Furthermore, we offer insights into the current research status and future trends in this area.

The emergence of large language models (LLMs) has substantially influenced natural language processing, demonstrating exceptional results across various tasks. In this study, we employ ``Introspective Tips" to facilitate LLMs in self-optimizing their decision-making. By introspectively examining trajectories, LLM refines its policy by generating succinct and valuable tips. Our method enhances the agent's performance in both few-shot and zero-shot learning situations by considering three essential scenarios: learning from the agent's past experiences, integrating expert demonstrations, and generalizing across diverse games. Importantly, we accomplish these improvements without fine-tuning the LLM parameters; rather, we adjust the prompt to generalize insights from the three aforementioned situations. Our framework not only supports but also emphasizes the advantage of employing LLM in in-contxt decision-making. Experiments involving over 100 games in TextWorld illustrate the superior performance of our approach.

Traffic forecasting is an important factor for the success of intelligent transportation systems. Deep learning models including convolution neural networks and recurrent neural networks have been applied in traffic forecasting problems to model the spatial and temporal dependencies. In recent years, to model the graph structures in the transportation systems as well as the contextual information, graph neural networks (GNNs) are introduced as new tools and have achieved the state-of-the-art performance in a series of traffic forecasting problems. In this survey, we review the rapidly growing body of recent research using different GNNs, e.g., graph convolutional and graph attention networks, in various traffic forecasting problems, e.g., road traffic flow and speed forecasting, passenger flow forecasting in urban rail transit systems, demand forecasting in ride-hailing platforms, etc. We also present a collection of open data and source resources for each problem, as well as future research directions. To the best of our knowledge, this paper is the first comprehensive survey that explores the application of graph neural networks for traffic forecasting problems. We have also created a public Github repository to update the latest papers, open data and source resources.

Distant supervision can effectively label data for relation extraction, but suffers from the noise labeling problem. Recent works mainly perform soft bag-level noise reduction strategies to find the relatively better samples in a sentence bag, which is suboptimal compared with making a hard decision of false positive samples in sentence level. In this paper, we introduce an adversarial learning framework, which we named DSGAN, to learn a sentence-level true-positive generator. Inspired by Generative Adversarial Networks, we regard the positive samples generated by the generator as the negative samples to train the discriminator. The optimal generator is obtained until the discrimination ability of the discriminator has the greatest decline. We adopt the generator to filter distant supervision training dataset and redistribute the false positive instances into the negative set, in which way to provide a cleaned dataset for relation classification. The experimental results show that the proposed strategy significantly improves the performance of distant supervision relation extraction comparing to state-of-the-art systems.

Visual Question Answering (VQA) models have struggled with counting objects in natural images so far. We identify a fundamental problem due to soft attention in these models as a cause. To circumvent this problem, we propose a neural network component that allows robust counting from object proposals. Experiments on a toy task show the effectiveness of this component and we obtain state-of-the-art accuracy on the number category of the VQA v2 dataset without negatively affecting other categories, even outperforming ensemble models with our single model. On a difficult balanced pair metric, the component gives a substantial improvement in counting over a strong baseline by 6.6%.

北京阿比特科技有限公司