亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Diffusion-Limited Aggregation (DLA) is a cluster-growth model that consists in a set of particles that are sequentially aggregated over a two-dimensional grid. In this paper, we introduce a biased version of the DLA model, in which particles are limited to move in a subset of possible directions. We denote by $k$-DLA the model where the particles move only in $k$ possible directions. We study the biased DLA model from the perspective of Computational Complexity, defining two decision problems The first problem is Prediction, whose input is a site of the grid $c$ and a sequence $S$ of walks, representing the trajectories of a set of particles. The question is whether a particle stops at site $c$ when sequence $S$ is realized. The second problem is Realization, where the input is a set of positions of the grid, $P$. The question is whether there exists a sequence $S$ that realizes $P$, i.e. all particles of $S$ exactly occupy the positions in $P$. Our aim is to classify the Prediciton and Realization problems for the different versions of DLA. We first show that Prediction is P-Complete for 2-DLA (thus for 3-DLA). Later, we show that Prediction can be solved much more efficiently for 1-DLA. In fact, we show that in that case the problem is NL-Complete. With respect to Realization, we show that restricted to 2-DLA the problem is in P, while in the 1-DLA case, the problem is in L.

相關內容

CC在計算復雜性方面表現突出。它的學科處于數學與計算機理論科學的交叉點,具有清晰的數學輪廓和嚴格的數學格式。官網鏈接: · 優化器 · 泛化理論 · 單純形 · Better ·
2022 年 2 月 22 日

We study the complexity of approximating the multimarginal optimal transport (MOT) distance, a generalization of the classical optimal transport distance, considered here between $m$ discrete probability distributions supported each on $n$ support points. First, we show that the standard linear programming (LP) representation of the MOT problem is not a minimum-cost flow problem when $m \geq 3$. This negative result implies that some combinatorial algorithms, e.g., network simplex method, are not suitable for approximating the MOT problem, while the worst-case complexity bound for the deterministic interior-point algorithm remains a quantity of $\tilde{O}(n^{3m})$. We then propose two simple and \textit{deterministic} algorithms for approximating the MOT problem. The first algorithm, which we refer to as \textit{multimarginal Sinkhorn} algorithm, is a provably efficient multimarginal generalization of the Sinkhorn algorithm. We show that it achieves a complexity bound of $\tilde{O}(m^3n^m\varepsilon^{-2})$ for a tolerance $\varepsilon \in (0, 1)$. This provides a first \textit{near-linear time} complexity bound guarantee for approximating the MOT problem and matches the best known complexity bound for the Sinkhorn algorithm in the classical OT setting when $m = 2$. The second algorithm, which we refer to as \textit{accelerated multimarginal Sinkhorn} algorithm, achieves the acceleration by incorporating an estimate sequence and the complexity bound is $\tilde{O}(m^3n^{m+1/3}\varepsilon^{-4/3})$. This bound is better than that of the first algorithm in terms of $1/\varepsilon$, and accelerated alternating minimization algorithm~\citep{Tupitsa-2020-Multimarginal} in terms of $n$. Finally, we compare our new algorithms with the commercial LP solver \textsc{Gurobi}. Preliminary results on synthetic data and real images demonstrate the effectiveness and efficiency of our algorithms.

An efficient, reliable, and interpretable global solution method, the Deep learning-based algorithm for Heterogeneous Agent Models (DeepHAM), is proposed for solving high dimensional heterogeneous agent models with aggregate shocks. The state distribution is approximately represented by a set of optimal generalized moments. Deep neural networks are used to approximate the value and policy functions, and the objective is optimized over directly simulated paths. In addition to being an accurate global solver, this method has three additional features. First, it is computationally efficient in solving complex heterogeneous agent models, and it does not suffer from the curse of dimensionality. Second, it provides a general and interpretable representation of the distribution over individual states, which is crucial in addressing the classical question of whether and how heterogeneity matters in macroeconomics. Third, it solves the constrained efficiency problem as easily as it solves the competitive equilibrium, which opens up new possibilities for studying optimal monetary and fiscal policies in heterogeneous agent models with aggregate shocks.

The rooted subtree prune and regraft (rSPR) distance between two rooted binary phylogenetic trees is a well-studied measure of topological dissimilarity that is NP-hard to compute. Here we describe an improved linear kernel for the problem. In particular, we show that if the classical subtree and chain reduction rules are augmented with a modified type of chain reduction rule, the resulting trees have at most 9k-3 leaves, where k is the rSPR distance; and that this bound is tight. The previous best-known linear kernel had size O(28k). To achieve this improvement we introduce cyclic generators, which can be viewed as cyclic analogues of the generators used in the phylogenetic networks literature. As a corollary to our main result we also give an improved weighted linear kernel for the minimum hybridization problem on two rooted binary phylogenetic trees.

Given an unknown $n \times n$ matrix $A$ having non-negative entries, the \emph{inner product} (IP) oracle takes as inputs a specified row (or a column) of $A$ and a vector $v \in \mathbb{R}^{n}$, and returns their inner product. A derivative of IP is the induced degree query in an unknown graph $G=(V(G), E(G))$ that takes a vertex $u \in V(G)$ and a subset $S \subseteq V(G)$ as input and reports the number of neighbors of $u$ that are present in $S$. The goal of this paper is to understand the strength of the inner product oracle. Our results in that direction are as follows: (I) IP oracle can solve bilinear form estimation, i.e., estimate the value of ${\bf x}^{T}A\bf{y}$ given two vectors ${\bf x},\, {\bf y} \in \mathbb{R}^{n}$ with non-negative entries and can sample almost uniformly entries of a matrix with non-negative entries; (ii) We tackle for the first time weighted edge estimation and weighted sampling of edges that follow as an application to the bilinear form estimation and almost uniform sampling problems, respectively; (iii) induced degree query, a derivative of IP can solve edge estimation and an almost uniform edge sampling in induced subgraphs. To the best of our knowledge, these are the first set of Oracle-based query complexity results for induced subgraphs. We show that IP/induced degree queries over the whole graph can simulate local queries in any induced subgraph; (iv) Apart from the above, we also show that IP can solve several problems related to matrix, like testing if the matrix is diagonal, symmetric, doubly stochastic, etc.

Entanglement resources can increase transmission rates substantially. Unfortunately, entanglement is a fragile resource that is quickly degraded by decoherence effects. In order to generate entanglement for optical communication, the transmitter first prepares an entangled photon pair locally, and then transmits one of the photons to the receiver through an optical fiber or free space. Without feedback, the transmitter does not know whether the entangled photon has reached the receiver. The present work introduces a new model of unreliable entanglement assistance, whereby the communication system operates whether entanglement assistance is present or not. While the sender is ignorant, the receiver knows whether the entanglement generation was successful. In the case of a failure, the receiver decodes less information. In this manner, the effective transmission rate is adapted according to the assistance status. Regularized formulas are derived for the classical and quantum capacity regions with unreliable entanglement assistance, characterizing the tradeoff between the unassisted rate and the excess rate that can be obtained from entanglement assistance.

Consider a matrix $\mathbf{F} \in \mathbb{K}^{m \times n}$ of univariate polynomials over a field~$\mathbb{K}$. We study the problem of computing the column rank profile of $\mathbf{F}$. To this end we first give an algorithm which improves the minimal kernel basis algorithm of Zhou, Labahn, and Storjohann (Proceedings ISSAC 2012). We then provide a second algorithm which computes the column rank profile of $\mathbf{F}$ with a rank-sensitive complexity of $O\tilde{~}(r^{\omega-2} n (m+D))$ operations in $\mathbb{K}$. Here, $D$ is the sum of row degrees of $\mathbf{F}$, $\omega$ is the exponent of matrix multiplication, and $O\tilde{~}(\cdot)$ hides logarithmic factors.

Perturbations targeting the graph structure have proven to be extremely effective in reducing the performance of Graph Neural Networks (GNNs), and traditional defenses such as adversarial training do not seem to be able to improve robustness. This work is motivated by the observation that adversarially injected edges effectively can be viewed as additional samples to a node's neighborhood aggregation function, which results in distorted aggregations accumulating over the layers. Conventional GNN aggregation functions, such as a sum or mean, can be distorted arbitrarily by a single outlier. We propose a robust aggregation function motivated by the field of robust statistics. Our approach exhibits the largest possible breakdown point of 0.5, which means that the bias of the aggregation is bounded as long as the fraction of adversarial edges of a node is less than 50\%. Our novel aggregation function, Soft Medoid, is a fully differentiable generalization of the Medoid and therefore lends itself well for end-to-end deep learning. Equipping a GNN with our aggregation improves the robustness with respect to structure perturbations on Cora ML by a factor of 3 (and 5.5 on Citeseer) and by a factor of 8 for low-degree nodes.

Retrieving object instances among cluttered scenes efficiently requires compact yet comprehensive regional image representations. Intuitively, object semantics can help build the index that focuses on the most relevant regions. However, due to the lack of bounding-box datasets for objects of interest among retrieval benchmarks, most recent work on regional representations has focused on either uniform or class-agnostic region selection. In this paper, we first fill the void by providing a new dataset of landmark bounding boxes, based on the Google Landmarks dataset, that includes $94k$ images with manually curated boxes from $15k$ unique landmarks. Then, we demonstrate how a trained landmark detector, using our new dataset, can be leveraged to index image regions and improve retrieval accuracy while being much more efficient than existing regional methods. In addition, we further introduce a novel regional aggregated selective match kernel (R-ASMK) to effectively combine information from detected regions into an improved holistic image representation. R-ASMK boosts image retrieval accuracy substantially at no additional memory cost, while even outperforming systems that index image regions independently. Our complete image retrieval system improves upon the previous state-of-the-art by significant margins on the Revisited Oxford and Paris datasets. Code and data will be released.

The Normalized Cut (NCut) objective function, widely used in data clustering and image segmentation, quantifies the cost of graph partitioning in a way that biases clusters or segments that are balanced towards having lower values than unbalanced partitionings. However, this bias is so strong that it avoids any singleton partitions, even when vertices are very weakly connected to the rest of the graph. Motivated by the B\"uhler-Hein family of balanced cut costs, we propose the family of Compassionately Conservative Balanced (CCB) Cut costs, which are indexed by a parameter that can be used to strike a compromise between the desire to avoid too many singleton partitions and the notion that all partitions should be balanced. We show that CCB-Cut minimization can be relaxed into an orthogonally constrained $\ell_{\tau}$-minimization problem that coincides with the problem of computing Piecewise Flat Embeddings (PFE) for one particular index value, and we present an algorithm for solving the relaxed problem by iteratively minimizing a sequence of reweighted Rayleigh quotients (IRRQ). Using images from the BSDS500 database, we show that image segmentation based on CCB-Cut minimization provides better accuracy with respect to ground truth and greater variability in region size than NCut-based image segmentation.

Topic models are one of the most frequently used models in machine learning due to its high interpretability and modular structure. However extending the model to include supervisory signal, incorporate pre-trained word embedding vectors and add nonlinear output function to the model is not an easy task because one has to resort to highly intricate approximate inference procedure. In this paper, we show that topic models could be viewed as performing a neighborhood aggregation algorithm where the messages are passed through a network defined over words. Under the network view of topic models, nodes corresponds to words in a document and edges correspond to either a relationship describing co-occurring words in a document or a relationship describing same word in the corpus. The network view allows us to extend the model to include supervisory signals, incorporate pre-trained word embedding vectors and add nonlinear output function to the model in a simple manner. Moreover, we describe a simple way to train the model that is well suited in a semi-supervised setting where we only have supervisory signals for some portion of the corpus and the goal is to improve prediction performance in the held-out data. Through careful experiments we show that our approach outperforms state-of-the-art supervised Latent Dirichlet Allocation implementation in both held-out document classification tasks and topic coherence.

北京阿比特科技有限公司