亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Business and technology are intricately connected through logic and design. They are equally sensitive to societal changes and may be devastated by scandal. Cooperative multi-robot systems (MRSs) are on the rise, allowing robots of different types and brands to work together in diverse contexts. Generative artificial intelligence has been a dominant topic in recent artificial intelligence (AI) discussions due to its capacity to mimic humans through the use of natural language and the production of media, including deep fakes. In this article, we focus specifically on the conversational aspects of generative AI, and hence use the term Conversational Generative artificial intelligence (CGI). Like MRSs, CGIs have enormous potential for revolutionizing processes across sectors and transforming the way humans conduct business. From a business perspective, cooperative MRSs alone, with potential conflicts of interest, privacy practices, and safety concerns, require ethical examination. MRSs empowered by CGIs demand multi-dimensional and sophisticated methods to uncover imminent ethical pitfalls. This study focuses on ethics in CGI-empowered MRSs while reporting the stages of developing the MORUL model.

相關內容

生成式人工智能是利用復雜的算法、模型和規則,從大規模數據集中學習,以創造新的原創內容的人工智能技術。這項技術能夠創造文本、圖片、聲音、視頻和代碼等多種類型的內容,全面超越了傳統軟件的數據處理和分析能力。2022年末,OpenAI推出的ChatGPT標志著這一技術在文本生成領域取得了顯著進展,2023年被稱為生成式人工智能的突破之年。這項技術從單一的語言生成逐步向多模態、具身化快速發展。在圖像生成方面,生成系統在解釋提示和生成逼真輸出方面取得了顯著的進步。同時,視頻和音頻的生成技術也在迅速發展,這為虛擬現實和元宇宙的實現提供了新的途徑。生成式人工智能技術在各行業、各領域都具有廣泛的應用前景。

Simulation-based inference has been popular for amortized Bayesian computation. It is typical to have more than one posterior approximation, from different inference algorithms, different architectures, or simply the randomness of initialization and stochastic gradients. With a consistency guarantee, we present a general posterior stacking framework to make use of all available approximations. Our stacking method is able to combine densities, simulation draws, confidence intervals, and moments, and address the overall precision, calibration, coverage, and bias of the posterior approximation at the same time. We illustrate our method on several benchmark simulations and a challenging cosmological inference task.

As a way of communicating with users and any LLMs like GPT or PaLM2, prompting becomes an increasingly important research topic for better utilization of LLMs. Although simple prompting performs well on single-step questions, it cannot permanently activate the correct knowledge path for multi-step reasoning tasks. The chain of thought (CoT), which often contains zero-shot CoT and few-shot CoT, is a recently developed prompting method that can explain the reasoning process to the LLM and outperforms simple prompting in three challenging reasoning tasks, including arithmetic, symbolic, and commonsense reasoning. In this paper, we propose a novel hint of thought (HoT) prompting with explainability and zero-shot generalization. First, it is decomposed into the following three steps: explainable sub-questions, logical reasoning, and answer extraction. Second, such three steps are sequentially ordered in the format of step-by-step hints, which can be easily adjusted and explained to different tasks. Finally, experimental results demonstrate that our HoT prompting has a significant advantage on the zero-shot reasoning task compared to existing zero-shot CoT. We did zero-shot experiments on math tasks like GSM8K, ADDSUB, AQUA, SVAMP and commonsense tasks such as StrategyQA. In particular, the accuracy of the proposed HoT prompting is improved with GSM8K from 40.50% to 67.80%, with AQUA from 31.9% to 46.4%, with SVAMP from 63.7% to 76.9%, and with ADDSUB from 74.7% to 87.34%, respectively, which even defeats the competitive PoT approach on GSM8k, AQUA, and SVAMP.

The low-rank quaternion matrix approximation has been successfully applied in many applications involving signal processing and color image processing. However, the cost of quaternion models for generating low-rank quaternion matrix approximation is sometimes considerable due to the computation of the quaternion singular value decomposition (QSVD), which limits their application to real large-scale data. To address this deficiency, an efficient quaternion matrix CUR (QMCUR) method for low-rank approximation is suggested, which provides significant acceleration in color image processing. We first explore the QMCUR approximation method, which uses actual columns and rows of the given quaternion matrix, instead of the costly QSVD. Additionally, two different sampling strategies are used to sample the above-selected columns and rows. Then, the perturbation analysis is performed on the QMCUR approximation of noisy versions of low-rank quaternion matrices. Extensive experiments on both synthetic and real data further reveal the superiority of the proposed algorithm compared with other algorithms for getting low-rank approximation, in terms of both efficiency and accuracy.

Confidence interval of mean is often used when quoting statistics. The same rigor is often missing when quoting percentiles and tolerance or percentile intervals. This article derives the expression for confidence in percentiles of a sample population. Confidence intervals of median is compared to those of mean for a few sample distributions. The concept of assurance from reliability engineering is then extended to percentiles. The assurance level of sorted samples simply matches the confidence and percentile levels. Numerical method to compute assurance using Brent's optimization method is provided as an open-source python package.

Accurate hydrological understanding and water cycle prediction are crucial for addressing scientific and societal challenges associated with the management of water resources, particularly under the dynamic influence of anthropogenic climate change. Existing reviews predominantly concentrate on the development of machine learning (ML) in this field, yet there is a clear distinction between hydrology and ML as separate paradigms. Here, we introduce physics-aware ML as a transformative approach to overcome the perceived barrier and revolutionize both fields. Specifically, we present a comprehensive review of the physics-aware ML methods, building a structured community (PaML) of existing methodologies that integrate prior physical knowledge or physics-based modeling into ML. We systematically analyze these PaML methodologies with respect to four aspects: physical data-guided ML, physics-informed ML, physics-embedded ML, and physics-aware hybrid learning. PaML facilitates ML-aided hypotheses, accelerating insights from big data and fostering scientific discoveries. We first conduct a systematic review of hydrology in PaML, including rainfall-runoff hydrological processes and hydrodynamic processes, and highlight the most promising and challenging directions for different objectives and PaML methods. Finally, a new PaML-based hydrology platform, termed HydroPML, is released as a foundation for hydrological applications. HydroPML enhances the explainability and causality of ML and lays the groundwork for the digital water cycle's realization. The HydroPML platform is publicly available at //hydropml.github.io/.

Fully decentralized learning is gaining momentum for training AI models at the Internet's edge, addressing infrastructure challenges and privacy concerns. In a decentralized machine learning system, data is distributed across multiple nodes, with each node training a local model based on its respective dataset. The local models are then shared and combined to form a global model capable of making accurate predictions on new data. Our exploration focuses on how different types of network structures influence the spreading of knowledge - the process by which nodes incorporate insights gained from learning patterns in data available on other nodes across the network. Specifically, this study investigates the intricate interplay between network structure and learning performance using three network topologies and six data distribution methods. These methods consider different vertex properties, including degree centrality, betweenness centrality, and clustering coefficient, along with whether nodes exhibit high or low values of these metrics. Our findings underscore the significance of global centrality metrics (degree, betweenness) in correlating with learning performance, while local clustering proves less predictive. We highlight the challenges in transferring knowledge from peripheral to central nodes, attributed to a dilution effect during model aggregation. Additionally, we observe that central nodes exert a pull effect, facilitating the spread of knowledge. In examining degree distribution, hubs in Barabasi-Albert networks positively impact learning for central nodes but exacerbate dilution when knowledge originates from peripheral nodes. Finally, we demonstrate the formidable challenge of knowledge circulation outside of segregated communities.

APIs have become the prominent technology of choice for achieving inter-service communications. The growth of API deployments has driven the urgency in addressing its lack of security standards. API Security is a topic for concern given the absence of standardized authorization in the OpenAPI standard, improper authorization opens the possibility for known and unknown vulnerabilities, which in the past years have been exploited by malicious actors resulting in data loss. This paper examines the number one vulnerability in API Security: Broken Object Level Authorization(BOLA), and proposes methods and tools to reduce the prevalence of this vulnerability. BOLA affects various API frameworks, our scope is fixated on the OpenAPI Specification(OAS). The OAS is a standard for describing and implementing APIs; popular OAS Implementations are FastAPI, Connexion (Flask), and many more. These implementations carry the pros and cons that are associated with the OASs knowledge of API properties. The Open API Specifications security properties do not address object authorization and provide no standardized approach to define such object properties. This leaves object-level security at the mercy of developers, which presents an increased risk of unintentionally creating attack vectors. Our aim is to tackle this void by introducing 1) the OAS ESS (OpenAPI Specification Extended Security Scheme) which includes declarative security controls for objects in OAS (design-based approach), and 2) an authorization module that can be imported to API services (Flask/FastAPI) to enforce authorization checks at the object level (development-based approach). When building an API service, a developer can start with the API design (specification) or its code. In both cases, a set of mechanisms are introduced to help developers mitigate and reduce the prevalence of BOLA.

Data augmentation (DA) is a powerful workhorse for bolstering performance in modern machine learning. Specific augmentations like translations and scaling in computer vision are traditionally believed to improve generalization by generating new (artificial) data from the same distribution. However, this traditional viewpoint does not explain the success of prevalent augmentations in modern machine learning (e.g. randomized masking, cutout, mixup), that greatly alter the training data distribution. In this work, we develop a new theoretical framework to characterize the impact of a general class of DA on underparameterized and overparameterized linear model generalization. Our framework reveals that DA induces implicit spectral regularization through a combination of two distinct effects: a) manipulating the relative proportion of eigenvalues of the data covariance matrix in a training-data-dependent manner, and b) uniformly boosting the entire spectrum of the data covariance matrix through ridge regression. These effects, when applied to popular augmentations, give rise to a wide variety of phenomena, including discrepancies in generalization between over-parameterized and under-parameterized regimes and differences between regression and classification tasks. Our framework highlights the nuanced and sometimes surprising impacts of DA on generalization, and serves as a testbed for novel augmentation design.

In large-scale systems there are fundamental challenges when centralised techniques are used for task allocation. The number of interactions is limited by resource constraints such as on computation, storage, and network communication. We can increase scalability by implementing the system as a distributed task-allocation system, sharing tasks across many agents. However, this also increases the resource cost of communications and synchronisation, and is difficult to scale. In this paper we present four algorithms to solve these problems. The combination of these algorithms enable each agent to improve their task allocation strategy through reinforcement learning, while changing how much they explore the system in response to how optimal they believe their current strategy is, given their past experience. We focus on distributed agent systems where the agents' behaviours are constrained by resource usage limits, limiting agents to local rather than system-wide knowledge. We evaluate these algorithms in a simulated environment where agents are given a task composed of multiple subtasks that must be allocated to other agents with differing capabilities, to then carry out those tasks. We also simulate real-life system effects such as networking instability. Our solution is shown to solve the task allocation problem to 6.7% of the theoretical optimal within the system configurations considered. It provides 5x better performance recovery over no-knowledge retention approaches when system connectivity is impacted, and is tested against systems up to 100 agents with less than a 9% impact on the algorithms' performance.

The new era of technology has brought us to the point where it is convenient for people to share their opinions over an abundance of platforms. These platforms have a provision for the users to express themselves in multiple forms of representations, including text, images, videos, and audio. This, however, makes it difficult for users to obtain all the key information about a topic, making the task of automatic multi-modal summarization (MMS) essential. In this paper, we present a comprehensive survey of the existing research in the area of MMS.

北京阿比特科技有限公司