亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Excessively long methods that encapsulate multiple responsibilities within a single method are challenging to comprehend, debug, reuse, and maintain. The solution to this problem, a hallmark refactoring called Extract Method, consists of two phases: (i) choosing the statements to extract and (ii) applying the mechanics to perform this refactoring. While the application part has been a staple feature of all modern IDEs, they leave it up to developers to choose the statements to extract. Choosing which statements are profitable to extract has been the subject of many research tools that employ hard-coded rules to optimize software quality metrics. Despite steady improvements, these tools often fail to generate refactorings that align with developers' preferences and acceptance criteria. In this paper, we introduce EM-Assist, a tool that augments the refactoring capabilities of IDEs with the power of LLMs to perform Extract Method refactoring. We empirically evaluated EM-Assist on a diverse, publicly available corpus that other researchers used in the past. The results show that EM-Assist outperforms previous state-of-the-art tools: at 1% tolerance, EM-Assist suggests the correct refactoring among its top-5 suggestions 60.6% of the time, compared to 54.2% reported by existing ML models, and 52.2% reported by existing static analysis tools. When we replicated 2,849 actual Extract Method instances from open-source projects, EM-Assist's recall rate was 42.1% compared to 6.5% for its peers. Furthermore, we conducted warehouse surveys with 20 industrial developers and suggested refactorings on their recent commits. 81.3% of the respondents agreed with the recommendations provided by EM-Assist. This shows the usefulness of our approach and ushers us into a new era of refactoring when LLMs.

相關內容

這個新版本的工具會議系列恢復了從1989年到2012年的50個會議的傳統。工具最初是“面向對象語言和系統的技術”,后來發展到包括軟件技術的所有創新方面。今天許多最重要的軟件概念都是在這里首次引入的。2019年TOOLS 50+1在俄羅斯喀山附近舉行,以同樣的創新精神、對所有與軟件相關的事物的熱情、科學穩健性和行業適用性的結合以及歡迎該領域所有趨勢和社區的開放態度,延續了該系列。 官網鏈接: · 控制器 · 可辨認的 · TOOLS · 代碼 ·
2024 年 3 月 11 日

Smart contracts are susceptible to various security issues, among which access control (AC) vulnerabilities are particularly critical. While existing research has proposed multiple detection tools, the automatic and appropriate repair of AC vulnerabilities in smart contracts remains a challenge. Unlike commonly supported vulnerability types by existing repair tools, such as reentrancy, which are usually fixed by template-based approaches, the main obstacle of AC lies in identifying the appropriate roles or permissions amid a long list of non-AC-related source code to generate proper patch code, a task that demands human-level intelligence. Leveraging recent advancements in large language models (LLMs), we employ the state-of-the-art GPT-4 model and enhance it with a novel approach called ACFIX. The key insight is that we can mine common AC practices for major categories of code functionality and use them to guide LLMs in fixing code with similar functionality. To this end, ACFIX involves both offline and online phases. First, during the offline phase, ACFIX mines a tax- onomy of common Role-based Access Control (RBAC) practices from 344,251 on-chain contracts, categorizing 49 role-permission pairs from the top 1,000 pairs mined. Second, during the online phase, ACFIX tracks AC-related elements across the contract and uses this context information along with a Chain-of-Thought pipeline to guide LLMs in identifying the most appropriate role-permission pair for the subject contract and subsequently generating a suitable patch. This patch will then undergo a validity and effectiveness check. To evaluate ACFIX, we built the first benchmark dataset of 118 real-world AC vulnerabilities, and our evaluation revealed that ACFIX successfully repaired 94.92% of them. This represents a significant improvement compared to the baseline GPT-4, which achieved only 52.54%.

The proliferation of mobile devices and social media has revolutionized content dissemination, with short-form video becoming increasingly prevalent. This shift has introduced the challenge of video reframing to fit various screen aspect ratios, a process that highlights the most compelling parts of a video. Traditionally, video reframing is a manual, time-consuming task requiring professional expertise, which incurs high production costs. A potential solution is to adopt some machine learning models, such as video salient object detection, to automate the process. However, these methods often lack generalizability due to their reliance on specific training data. The advent of powerful large language models (LLMs) open new avenues for AI capabilities. Building on this, we introduce Reframe Any Video Agent (RAVA), a LLM-based agent that leverages visual foundation models and human instructions to restructure visual content for video reframing. RAVA operates in three stages: perception, where it interprets user instructions and video content; planning, where it determines aspect ratios and reframing strategies; and execution, where it invokes the editing tools to produce the final video. Our experiments validate the effectiveness of RAVA in video salient object detection and real-world reframing tasks, demonstrating its potential as a tool for AI-powered video editing.

Producing high-quality forecasts of key climate variables, such as temperature and precipitation, on subseasonal time scales has long been a gap in operational forecasting. This study explores an application of machine learning (ML) models as post-processing tools for subseasonal forecasting. Lagged numerical ensemble forecasts (i.e., an ensemble where the members have different initial dates) and observational data, including relative humidity, pressure at sea level, and geopotential height, are incorporated into various ML methods to predict monthly average precipitation and two-meter temperature two weeks in advance for the continental United States. Regression, quantile regression, and tercile classification tasks using linear models, random forests, convolutional neural networks, and stacked models (a multi-model approach based on the prediction of the individual ML models) are considered. Unlike previous ML approaches that often use ensemble mean alone, we leverage information embedded in the ensemble forecasts to enhance prediction accuracy. Additionally, we investigate extreme event predictions that are crucial for planning and mitigation efforts. Considering ensemble members as a collection of spatial forecasts, we explore different approaches to address spatial variability. Trade-offs between different approaches may be mitigated with model stacking. Our proposed models outperform standard baselines such as climatological forecasts and ensemble means. This paper further includes an investigation of feature importance, trade-offs between using the full ensemble or only the ensemble mean, and different modes of accounting for spatial variability.

Large language models (LLMs) have achieved unprecedented performance in various applications, yet their evaluation remains a critical issue. Existing hallucination benchmarks are either static or lack adjustable complexity for thorough analysis. We contend that utilizing existing relational databases is a promising approach for constructing benchmarks due to their accurate knowledge description via functional dependencies. We propose ERBench to automatically convert any relational database into a benchmark based on the entity-relationship (ER) model. Our key idea is to construct questions using the database schema, records, and functional dependencies such that they can be automatically verified. In addition, we use foreign key constraints to join relations and construct multihop questions, which can be arbitrarily complex and used to debug the intermediate answers of LLMs. Finally, ERBench supports continuous evaluation, multimodal questions, and various prompt engineering techniques. In our experiments, we construct an LLM benchmark using databases of multiple domains and make an extensive comparison of contemporary LLMs. We observe that better LLMs like GPT-4 can handle a larger variety of question types, but are by no means perfect. Also, correct answers do not necessarily imply correct rationales, which is an important evaluation that ERBench does better than other benchmarks for various question types. Code is available at https: //github.com/DILAB-KAIST/ERBench.

To enhance accuracy of robot state estimation, active sensing (or perception-aware) methods seek trajectories that maximize the information gathered by the sensors. To this aim, one possibility is to seek trajectories that minimize the (estimation error) covariance matrix output by an extended Kalman filter (EKF), w.r.t. its control inputs over a given horizon. However, this is computationally demanding. In this article, we derive novel backpropagation analytical formulas for the derivatives of the covariance matrices of an EKF w.r.t. all its inputs. We then leverage the obtained analytical gradients as an enabling technology to derive perception-aware optimal motion plans. Simulations validate the approach, showcasing improvements in execution time, notably over PyTorch's automatic differentiation. Experimental results on a real vehicle also support the method.

Ensuring alignment, which refers to making models behave in accordance with human intentions [1,2], has become a critical task before deploying large language models (LLMs) in real-world applications. For instance, OpenAI devoted six months to iteratively aligning GPT-4 before its release [3]. However, a major challenge faced by practitioners is the lack of clear guidance on evaluating whether LLM outputs align with social norms, values, and regulations. This obstacle hinders systematic iteration and deployment of LLMs. To address this issue, this paper presents a comprehensive survey of key dimensions that are crucial to consider when assessing LLM trustworthiness. The survey covers seven major categories of LLM trustworthiness: reliability, safety, fairness, resistance to misuse, explainability and reasoning, adherence to social norms, and robustness. Each major category is further divided into several sub-categories, resulting in a total of 29 sub-categories. Additionally, a subset of 8 sub-categories is selected for further investigation, where corresponding measurement studies are designed and conducted on several widely-used LLMs. The measurement results indicate that, in general, more aligned models tend to perform better in terms of overall trustworthiness. However, the effectiveness of alignment varies across the different trustworthiness categories considered. This highlights the importance of conducting more fine-grained analyses, testing, and making continuous improvements on LLM alignment. By shedding light on these key dimensions of LLM trustworthiness, this paper aims to provide valuable insights and guidance to practitioners in the field. Understanding and addressing these concerns will be crucial in achieving reliable and ethically sound deployment of LLMs in various applications.

Generative commonsense reasoning which aims to empower machines to generate sentences with the capacity of reasoning over a set of concepts is a critical bottleneck for text generation. Even the state-of-the-art pre-trained language generation models struggle at this task and often produce implausible and anomalous sentences. One reason is that they rarely consider incorporating the knowledge graph which can provide rich relational information among the commonsense concepts. To promote the ability of commonsense reasoning for text generation, we propose a novel knowledge graph augmented pre-trained language generation model KG-BART, which encompasses the complex relations of concepts through the knowledge graph and produces more logical and natural sentences as output. Moreover, KG-BART can leverage the graph attention to aggregate the rich concept semantics that enhances the model generalization on unseen concept sets. Experiments on benchmark CommonGen dataset verify the effectiveness of our proposed approach by comparing with several strong pre-trained language generation models, particularly KG-BART outperforms BART by 5.80, 4.60, in terms of BLEU-3, 4. Moreover, we also show that the generated context by our model can work as background scenarios to benefit downstream commonsense QA tasks.

With the capability of modeling bidirectional contexts, denoising autoencoding based pretraining like BERT achieves better performance than pretraining approaches based on autoregressive language modeling. However, relying on corrupting the input with masks, BERT neglects dependency between the masked positions and suffers from a pretrain-finetune discrepancy. In light of these pros and cons, we propose XLNet, a generalized autoregressive pretraining method that (1) enables learning bidirectional contexts by maximizing the expected likelihood over all permutations of the factorization order and (2) overcomes the limitations of BERT thanks to its autoregressive formulation. Furthermore, XLNet integrates ideas from Transformer-XL, the state-of-the-art autoregressive model, into pretraining. Empirically, XLNet outperforms BERT on 20 tasks, often by a large margin, and achieves state-of-the-art results on 18 tasks including question answering, natural language inference, sentiment analysis, and document ranking.

Distant supervision can effectively label data for relation extraction, but suffers from the noise labeling problem. Recent works mainly perform soft bag-level noise reduction strategies to find the relatively better samples in a sentence bag, which is suboptimal compared with making a hard decision of false positive samples in sentence level. In this paper, we introduce an adversarial learning framework, which we named DSGAN, to learn a sentence-level true-positive generator. Inspired by Generative Adversarial Networks, we regard the positive samples generated by the generator as the negative samples to train the discriminator. The optimal generator is obtained until the discrimination ability of the discriminator has the greatest decline. We adopt the generator to filter distant supervision training dataset and redistribute the false positive instances into the negative set, in which way to provide a cleaned dataset for relation classification. The experimental results show that the proposed strategy significantly improves the performance of distant supervision relation extraction comparing to state-of-the-art systems.

While existing machine learning models have achieved great success for sentiment classification, they typically do not explicitly capture sentiment-oriented word interaction, which can lead to poor results for fine-grained analysis at the snippet level (a phrase or sentence). Factorization Machine provides a possible approach to learning element-wise interaction for recommender systems, but they are not directly applicable to our task due to the inability to model contexts and word sequences. In this work, we develop two Position-aware Factorization Machines which consider word interaction, context and position information. Such information is jointly encoded in a set of sentiment-oriented word interaction vectors. Compared to traditional word embeddings, SWI vectors explicitly capture sentiment-oriented word interaction and simplify the parameter learning. Experimental results show that while they have comparable performance with state-of-the-art methods for document-level classification, they benefit the snippet/sentence-level sentiment analysis.

北京阿比特科技有限公司