Singularly perturbed boundary value problems pose a significant challenge for their numerical approximations because of the presence of sharp boundary layers. These sharp boundary layers are responsible for the stiffness of solutions, which leads to large computational errors, if not properly handled. It is well-known that the classical numerical methods as well as the Physics-Informed Neural Networks (PINNs) require some special treatments near the boundary, e.g., using extensive mesh refinements or finer collocation points, in order to obtain an accurate approximate solution especially inside of the stiff boundary layer. In this article, we modify the PINNs and construct our new semi-analytic SL-PINNs suitable for singularly perturbed boundary value problems. Performing the boundary layer analysis, we first find the corrector functions describing the singular behavior of the stiff solutions inside boundary layers. Then we obtain the SL-PINN approximations of the singularly perturbed problems by embedding the explicit correctors in the structure of PINNs or by training the correctors together with the PINN approximations. Our numerical experiments confirm that our new SL-PINN methods produce stable and accurate approximations for stiff solutions.
In statistical inference, retrodiction is the act of inferring potential causes in the past based on knowledge of the effects in the present and the dynamics leading to the present. Retrodiction is applicable even when the dynamics is not reversible, and it agrees with the reverse dynamics when it exists, so that retrodiction may be viewed as an extension of inversion, i.e., time-reversal. Recently, an axiomatic definition of retrodiction has been made in a way that is applicable to both classical and quantum probability using ideas from category theory. Almost simultaneously, a framework for information flow in in terms of semicartesian categories has been proposed in the setting of categorical probability theory. Here, we formulate a general definition of retrodiction to add to the information flow axioms in semicartesian categories, thus providing an abstract framework for retrodiction beyond classical and quantum probability theory. More precisely, we extend Bayesian inference, and more generally Jeffrey's probability kinematics, to arbitrary semicartesian categories.
A popular method for variance reduction in observational causal inference is propensity-based trimming, the practice of removing units with extreme propensities from the sample. This practice has theoretical grounding when the data are homoscedastic and the propensity model is parametric (Yang and Ding, 2018; Crump et al. 2009), but in modern settings where heteroscedastic data are analyzed with non-parametric models, existing theory fails to support current practice. In this work, we address this challenge by developing new methods and theory for sample trimming. Our contributions are three-fold: first, we describe novel procedures for selecting which units to trim. Our procedures differ from previous work in that we trim not only units with small propensities, but also units with extreme conditional variances. Second, we give new theoretical guarantees for inference after trimming. In particular, we show how to perform inference on the trimmed subpopulation without requiring that our regressions converge at parametric rates. Instead, we make only fourth-root rate assumptions like those in the double machine learning literature. This result applies to conventional propensity-based trimming as well and thus may be of independent interest. Finally, we propose a bootstrap-based method for constructing simultaneously valid confidence intervals for multiple trimmed sub-populations, which are valuable for navigating the trade-off between sample size and variance reduction inherent in trimming. We validate our methods in simulation, on the 2007-2008 National Health and Nutrition Examination Survey, and on a semi-synthetic Medicare dataset and find promising results in all settings.
This paper proposes a new boundary integral equation (BIE) methodology based on the perfectly matched layer (PML) truncation technique for solving the electromagnetic scattering problems in a multi-layered medium. Instead of using the original PML stretched fields, artificial fields which are also equivalent to the solutions in the physical region are introduced. This significantly simplifies the study of the proposed methodology to derive the PML problem. Then some PML transformed layer potentials and the associated boundary integral operators (BIOs) are defined and the corresponding jump relations are shown. Under the assumption that the fields vanish on the PML boundary, the solution representations, as well as the related BIEs and regularization of the hyper-singular operators, in terms of the current density functions on the truncated interface, are derived. Numerical experiments are presented to demonstrate the efficiency and accuracy of the method.
We propose a novel algorithm for the support estimation of partially known Gaussian graphical models that incorporates prior information about the underlying graph. In contrast to classical approaches that provide a point estimate based on a maximum likelihood or a maximum a posteriori criterion using (simple) priors on the precision matrix, we consider a prior on the graph and rely on annealed Langevin diffusion to generate samples from the posterior distribution. Since the Langevin sampler requires access to the score function of the underlying graph prior, we use graph neural networks to effectively estimate the score from a graph dataset (either available beforehand or generated from a known distribution). Numerical experiments demonstrate the benefits of our approach.
We determine the material parameters in the relaxed micromorphic generalized continuum model for a given periodic microstructure in this work. This is achieved through a least squares fitting of the total energy of the relaxed micromorphic homogeneous continuum to the total energy of the fully-resolved heterogeneous microstructure, governed by classical linear elasticity. The relaxed micromorphic model is a generalized continuum that utilizes the $\Curl$ of a micro-distortion field instead of its full gradient as in the classical micromorphic theory, leading to several advantages and differences. The most crucial advantage is that it operates between two well-defined scales. These scales are determined by linear elasticity with microscopic and macroscopic elasticity tensors, which respectively bound the stiffness of the relaxed micromorphic continuum from above and below. While the macroscopic elasticity tensor is established a priori through standard periodic first-order homogenization, the microscopic elasticity tensor remains to be determined. Additionally, the characteristic length parameter, associated with curvature measurement, controls the transition between the micro- and macro-scales. Both the microscopic elasticity tensor and the characteristic length parameter are here determined using a computational approach based on the least squares fitting of energies. This process involves the consideration of an adequate number of quadratic deformation modes and different specimen sizes. We conduct a comparative analysis between the least square fitting results of the relaxed micromorphic model, the fitting of a skew-symmetric micro-distortion field (Cosserat-micropolar model), and the fitting of the classical micromorphic model with two different formulations for the curvature...
Any interactive protocol between a pair of parties can be reliably simulated in the presence of noise with a multiplicative overhead on the number of rounds (Schulman 1996). The reciprocal of the best (least) overhead is called the interactive capacity of the noisy channel. In this work, we present lower bounds on the interactive capacity of the binary erasure channel. Our lower bound improves the best known bound due to Ben-Yishai et al. 2021 by roughly a factor of 1.75. The improvement is due to a tighter analysis of the correctness of the simulation protocol using error pattern analysis. More precisely, instead of using the well-known technique of bounding the least number of erasures needed to make the simulation fail, we identify and bound the probability of specific erasure patterns causing simulation failure. We remark that error pattern analysis can be useful in solving other problems involving stochastic noise, such as bounding the interactive capacity of different channels.
We study the problem of parameter estimation for large exchangeable interacting particle systems when a sample of discrete observations from a single particle is known. We propose a novel method based on martingale estimating functions constructed by employing the eigenvalues and eigenfunctions of the generator of the mean field limit, where the law of the process is replaced by the (unique) invariant measure of the mean field dynamics. We then prove that our estimator is asymptotically unbiased and asymptotically normal when the number of observations and the number of particles tend to infinity, and we provide a rate of convergence towards the exact value of the parameters. Finally, we present several numerical experiments which show the accuracy of our estimator and corroborate our theoretical findings, even in the case the mean field dynamics exhibit more than one steady states.
The notion of an e-value has been recently proposed as a possible alternative to critical regions and p-values in statistical hypothesis testing. In this paper we consider testing the nonparametric hypothesis of symmetry, introduce analogues for e-values of three popular nonparametric tests, define an analogue for e-values of Pitman's asymptotic relative efficiency, and apply it to the three nonparametric tests. We discuss limitations of our simple definition of asymptotic relative efficiency and list directions of further research.
In this work, a Generalized Finite Difference (GFD) scheme is presented for effectively computing the numerical solution of a parabolic-elliptic system modelling a bacterial strain with density-suppressed motility. The GFD method is a meshless method known for its simplicity for solving non-linear boundary value problems over irregular geometries. The paper first introduces the basic elements of the GFD method, and then an explicit-implicit scheme is derived. The convergence of the method is proven under a bound for the time step, and an algorithm is provided for its computational implementation. Finally, some examples are considered comparing the results obtained with a regular mesh and an irregular cloud of points.
In arXiv:2305.03945 [math.NA], a first-order optimization algorithm has been introduced to solve time-implicit schemes of reaction-diffusion equations. In this research, we conduct theoretical studies on this first-order algorithm equipped with a quadratic regularization term. We provide sufficient conditions under which the proposed algorithm and its time-continuous limit converge exponentially fast to a desired time-implicit numerical solution. We show both theoretically and numerically that the convergence rate is independent of the grid size, which makes our method suitable for large-scale problems. The efficiency of our algorithm has been verified via a series of numerical examples conducted on various types of reaction-diffusion equations. The choice of optimal hyperparameters as well as comparisons with some classical root-finding algorithms are also discussed in the numerical section.