亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Effective connectivity estimation plays a crucial role in understanding the interactions and information flow between different brain regions. However, the functional time series used for estimating effective connentivity is derived from certain software, which may lead to large computing errors because of different parameter settings and degrade the ability to model complex causal relationships between brain regions. In this paper, a brain diffuser with hierarchical transformer (BDHT) is proposed to estimate effective connectivity for mild cognitive impairment (MCI) analysis. To our best knowledge, the proposed brain diffuer is the first generative model to apply diffusion models in the application of generating and analyzing multimodal brain networks. Specifically, the BDHT leverages the structural connectivity to guide the reverse processes in an efficient way. It makes the denoising process more reliable and guarantees effective connectivity estimation accuracy. To improve denoising quality, the hierarchical denoising transformer is designed to learn multi-scale features in topological space. Furthermore, the GraphConFormer block can concentrate on both global and adjacent connectivity information. By stacking the multi-head attention and graph convolutional network, the proposed model enhances structure-function complementarity and improves the ability in noise estimation. Experimental evaluations of the denoising diffusion model demonstrate its effectiveness in estimating effective connectivity. The method achieves superior performance in terms of accuracy and robustness compared to existing approaches. It can captures both unidirectal and bidirectional interactions between brain regions, providing a comprehensive understanding of the brain's information processing mechanisms.

相關內容

When training predictive models on data with missing entries, the most widely used and versatile approach is a pipeline technique where we first impute missing entries and then compute predictions. In this paper, we view prediction with missing data as a two-stage adaptive optimization problem and propose a new class of models, adaptive linear regression models, where the regression coefficients adapt to the set of observed features. We show that some adaptive linear regression models are equivalent to learning an imputation rule and a downstream linear regression model simultaneously instead of sequentially. We leverage this joint-impute-then-regress interpretation to generalize our framework to non-linear models. In settings where data is strongly not missing at random, our methods achieve a 2-10% improvement in out-of-sample accuracy.

Extremely large aperture arrays can enable unprecedented spatial multiplexing in beyond 5G systems due to their extremely narrow beamfocusing capabilities. However, acquiring the spatial correlation matrix to enable efficient channel estimation is a complex task due to the vast number of antenna dimensions. Recently, a new estimation method called the "reduced-subspace least squares (RS-LS) estimator" has been proposed for densely packed arrays. This method relies solely on the geometry of the array to limit the estimation resources. In this paper, we address a gap in the existing literature by deriving the average spectral efficiency for a certain distribution of user equipments (UEs) and a lower bound on it when using the RS-LS estimator. This bound is determined by the channel gain and the statistics of the normalized spatial correlation matrices of potential UEs but, importantly, does not require knowledge of a specific UE's spatial correlation matrix. We establish that there exists a pilot length that maximizes this expression. Additionally, we derive an approximate expression for the optimal pilot length under low signal-to-noise ratio (SNR) conditions. Simulation results validate the tightness of the derived lower bound and the effectiveness of using the optimized pilot length.

Modeling the correlations among errors is closely associated with how accurately the model can quantify predictive uncertainty in probabilistic time series forecasting. Recent multivariate models have made significant progress in accounting for contemporaneous correlations among errors, while a common assumption on these errors is that they are temporally independent for the sake of statistical simplicity. However, real-world observations often deviate from this assumption, since errors usually exhibit substantial autocorrelation due to various factors such as the exclusion of temporally correlated covariates. In this work, we propose an efficient method, based on a low-rank-plus-diagonal parameterization of the covariance matrix, which can effectively characterize the autocorrelation of errors. The proposed method possesses several desirable properties: the complexity does not scale with the number of time series, the resulting covariance can be used for calibrating predictions, and it can seamlessly integrate with any model with Gaussian-distributed errors. We empirically demonstrate these properties using two distinct neural forecasting models -- GPVar and Transformer. Our experimental results confirm the effectiveness of our method in enhancing predictive accuracy and the quality of uncertainty quantification on multiple real-world datasets.

We present a new methodology for handling AI errors by introducing weakly supervised AI error correctors with a priori performance guarantees. These AI correctors are auxiliary maps whose role is to moderate the decisions of some previously constructed underlying classifier by either approving or rejecting its decisions. The rejection of a decision can be used as a signal to suggest abstaining from making a decision. A key technical focus of the work is in providing performance guarantees for these new AI correctors through bounds on the probabilities of incorrect decisions. These bounds are distribution agnostic and do not rely on assumptions on the data dimension. Our empirical example illustrates how the framework can be applied to improve the performance of an image classifier in a challenging real-world task where training data are scarce.

A decision maker typically (i) incorporates training data to learn about the relative effectiveness of the treatments, and (ii) chooses an implementation mechanism that implies an "optimal" predicted outcome distribution according to some target functional. Nevertheless, a discrimination-aware decision maker may not be satisfied achieving said optimality at the cost of heavily discriminating against subgroups of the population, in the sense that the outcome distribution in a subgroup deviates strongly from the overall optimal outcome distribution. We study a framework that allows the decision maker to penalize for such deviations, while allowing for a wide range of target functionals and discrimination measures to be employed. We establish regret and consistency guarantees for empirical success policies with data-driven tuning parameters, and provide numerical results. Furthermore, we briefly illustrate the methods in two empirical settings.

The accurate and interpretable prediction of future events in time-series data often requires the capturing of representative patterns (or referred to as states) underpinning the observed data. To this end, most existing studies focus on the representation and recognition of states, but ignore the changing transitional relations among them. In this paper, we present evolutionary state graph, a dynamic graph structure designed to systematically represent the evolving relations (edges) among states (nodes) along time. We conduct analysis on the dynamic graphs constructed from the time-series data and show that changes on the graph structures (e.g., edges connecting certain state nodes) can inform the occurrences of events (i.e., time-series fluctuation). Inspired by this, we propose a novel graph neural network model, Evolutionary State Graph Network (EvoNet), to encode the evolutionary state graph for accurate and interpretable time-series event prediction. Specifically, Evolutionary State Graph Network models both the node-level (state-to-state) and graph-level (segment-to-segment) propagation, and captures the node-graph (state-to-segment) interactions over time. Experimental results based on five real-world datasets show that our approach not only achieves clear improvements compared with 11 baselines, but also provides more insights towards explaining the results of event predictions.

Translational distance-based knowledge graph embedding has shown progressive improvements on the link prediction task, from TransE to the latest state-of-the-art RotatE. However, N-1, 1-N and N-N predictions still remain challenging. In this work, we propose a novel translational distance-based approach for knowledge graph link prediction. The proposed method includes two-folds, first we extend the RotatE from 2D complex domain to high dimension space with orthogonal transforms to model relations for better modeling capacity. Second, the graph context is explicitly modeled via two directed context representations. These context representations are used as part of the distance scoring function to measure the plausibility of the triples during training and inference. The proposed approach effectively improves prediction accuracy on the difficult N-1, 1-N and N-N cases for knowledge graph link prediction task. The experimental results show that it achieves better performance on two benchmark data sets compared to the baseline RotatE, especially on data set (FB15k-237) with many high in-degree connection nodes.

High spectral dimensionality and the shortage of annotations make hyperspectral image (HSI) classification a challenging problem. Recent studies suggest that convolutional neural networks can learn discriminative spatial features, which play a paramount role in HSI interpretation. However, most of these methods ignore the distinctive spectral-spatial characteristic of hyperspectral data. In addition, a large amount of unlabeled data remains an unexploited gold mine for efficient data use. Therefore, we proposed an integration of generative adversarial networks (GANs) and probabilistic graphical models for HSI classification. Specifically, we used a spectral-spatial generator and a discriminator to identify land cover categories of hyperspectral cubes. Moreover, to take advantage of a large amount of unlabeled data, we adopted a conditional random field to refine the preliminary classification results generated by GANs. Experimental results obtained using two commonly studied datasets demonstrate that the proposed framework achieved encouraging classification accuracy using a small number of data for training.

Detecting carried objects is one of the requirements for developing systems to reason about activities involving people and objects. We present an approach to detect carried objects from a single video frame with a novel method that incorporates features from multiple scales. Initially, a foreground mask in a video frame is segmented into multi-scale superpixels. Then the human-like regions in the segmented area are identified by matching a set of extracted features from superpixels against learned features in a codebook. A carried object probability map is generated using the complement of the matching probabilities of superpixels to human-like regions and background information. A group of superpixels with high carried object probability and strong edge support is then merged to obtain the shape of the carried object. We applied our method to two challenging datasets, and results show that our method is competitive with or better than the state-of-the-art.

Recommender System (RS) is a hot area where artificial intelligence (AI) techniques can be effectively applied to improve performance. Since the well-known Netflix Challenge, collaborative filtering (CF) has become the most popular and effective recommendation method. Despite their success in CF, various AI techniques still have to face the data sparsity and cold start problems. Previous works tried to solve these two problems by utilizing auxiliary information, such as social connections among users and meta-data of items. However, they process different types of information separately, leading to information loss. In this work, we propose to utilize Heterogeneous Information Network (HIN), which is a natural and general representation of different types of data, to enhance CF-based recommending methods. HIN-based recommender systems face two problems: how to represent high-level semantics for recommendation and how to fuse the heterogeneous information to recommend. To address these problems, we propose to applying meta-graph to HIN-based RS and solve the information fusion problem with a "matrix factorization (MF) + factorization machine (FM)" framework. For the "MF" part, we obtain user-item similarity matrices from each meta-graph and adopt low-rank matrix approximation to get latent features for both users and items. For the "FM" part, we propose to apply FM with Group lasso (FMG) on the obtained features to simultaneously predict missing ratings and select useful meta-graphs. Experimental results on two large real-world datasets, i.e., Amazon and Yelp, show that our proposed approach is better than that of the state-of-the-art FM and other HIN-based recommending methods.

北京阿比特科技有限公司