亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Engineering long-running computing systems that achieve their goals under ever-changing conditions pose significant challenges. Self-adaptation has shown to be a viable approach to dealing with changing conditions. Yet, the capabilities of a self-adaptive system are constrained by its operational design domain (ODD), i.e., the conditions for which the system was built (requirements, constraints, and context). Changes, such as adding new goals or dealing with new contexts, require system evolution. While the system evolution process has been automated substantially, it remains human-driven. Given the growing complexity of computing systems, human-driven evolution will eventually become unmanageable. In this paper, we provide a definition for ODD and apply it to a self-adaptive system. Next, we explain why conditions not covered by the ODD require system evolution. Then, we outline a new approach for self-evolution that leverages the concept of ODD, enabling a system to evolve autonomously to deal with conditions not anticipated by its initial ODD. We conclude with open challenges to realise self-evolution.

相關內容

Most existing methods for unsupervised domain adaptation (UDA) rely on a shared network to extract domain-invariant features. However, when facing multiple source domains, optimizing such a network involves updating the parameters of the entire network, making it both computationally expensive and challenging, particularly when coupled with min-max objectives. Inspired by recent advances in prompt learning that adapts high-capacity models for downstream tasks in a computationally economic way, we introduce Multi-Prompt Alignment (MPA), a simple yet efficient framework for multi-source UDA. Given a source and target domain pair, MPA first trains an individual prompt to minimize the domain gap through a contrastive loss. Then, MPA denoises the learned prompts through an auto-encoding process and aligns them by maximizing the agreement of all the reconstructed prompts. Moreover, we show that the resulting subspace acquired from the auto-encoding process can easily generalize to a streamlined set of target domains, making our method more efficient for practical usage. Extensive experiments show that MPA achieves state-of-the-art results on three popular datasets with an impressive average accuracy of 54.1% on DomainNet.

It has become a popular paradigm to transfer the knowledge of large-scale pre-trained models to various downstream tasks via fine-tuning the entire model parameters. However, with the growth of model scale and the rising number of downstream tasks, this paradigm inevitably meets the challenges in terms of computation consumption and memory footprint issues. Recently, Parameter-Efficient Fine-Tuning (PEFT) (e.g., Adapter, LoRA, BitFit) shows a promising paradigm to alleviate these concerns by updating only a portion of parameters. Despite these PEFTs having demonstrated satisfactory performance in natural language processing, it remains under-explored for the question of whether these techniques could be transferred to graph-based tasks with Graph Transformer Networks (GTNs). Therefore, in this paper, we fill this gap by providing extensive benchmarks with traditional PEFTs on a range of graph-based downstream tasks. Our empirical study shows that it is sub-optimal to directly transfer existing PEFTs to graph-based tasks due to the issue of feature distribution shift. To address this issue, we propose a novel structure-aware PEFT approach, named G-Adapter, which leverages graph convolution operation to introduce graph structure (e.g., graph adjacent matrix) as an inductive bias to guide the updating process. Besides, we propose Bregman proximal point optimization to further alleviate feature distribution shift by preventing the model from aggressive update. Extensive experiments demonstrate that G-Adapter obtains the state-of-the-art performance compared to the counterparts on nine graph benchmark datasets based on two pre-trained GTNs, and delivers tremendous memory footprint efficiency compared to the conventional paradigm.

The Internet of Production (IoP) leverages concepts such as digital shadows, data lakes, and a World Wide Lab (WWL) to advance today's production. Consequently, it requires a technical infrastructure that can support the agile deployment of these concepts and corresponding high-level applications, which, e.g., demand the processing of massive data in motion and at rest. As such, key research aspects are the support for low-latency control loops, concepts on scalable data stream processing, deployable information security, and semantically rich and efficient long-term storage. In particular, such an infrastructure cannot continue to be limited to machines and sensors, but additionally needs to encompass networked environments: production cells, edge computing, and location-independent cloud infrastructures. Finally, in light of the envisioned WWL, i.e., the interconnection of production sites, the technical infrastructure must be advanced to support secure and privacy-preserving industrial collaboration. To evolve today's production sites and lay the infrastructural foundation for the IoP, we identify five broad streams of research: (1) adapting data and stream processing to heterogeneous data from distributed sources, (2) ensuring data interoperability between systems and production sites, (3) exchanging and sharing data with different stakeholders, (4) network security approaches addressing the risks of increasing interconnectivity, and (5) security architectures to enable secure and privacy-preserving industrial collaboration. With our research, we evolve the underlying infrastructure from isolated, sparsely networked production sites toward an architecture that supports high-level applications and sophisticated digital shadows while facilitating the transition toward a WWL.

With recent advancements in computer hardware and software platforms, there has been a surge of interest in solving partial differential equations with deep learning-based methods, and the integration with domain decomposition strategies has attracted considerable attention owing to its enhanced representation and parallelization capacities of the network solution. While there are already several works that substitute the subproblem solver with neural networks for overlapping Schwarz methods, the non-overlapping counterpart has not been extensively explored because of the inaccurate flux estimation at interface that would propagate errors to neighbouring subdomains and eventually hinder the convergence of outer iterations. In this study, a novel learning approach for solving elliptic boundary value problems, i.e., the compensated deep Ritz method using neural network extension operators, is proposed to enable reliable flux transmission across subdomain interfaces, thereby allowing us to construct effective learning algorithms for realizing non-overlapping domain decomposition methods (DDMs) in the presence of erroneous interface conditions. Numerical experiments on a variety of elliptic problems, including regular and irregular interfaces, low and high dimensions, two and four subdomains, and smooth and high-contrast coefficients are carried out to validate the effectiveness of our proposed algorithms.

Accessibility is one of the most important features in the design of robots and their interfaces. This thesis proposes methods that improve the accessibility of robots for three different target audiences: consumers, researchers, and learners. In order for humans and robots to work together effectively, they both must be able to communicate with each other. We tackle the problem of generating route instructions that are readily understandable by novice humans for the navigation of a priori unknown indoor environments. We then move on to the related problem of enabling robots to understand natural language utterances in the context of learning to operate articulated objects (e.g., fridges, drawers) by leveraging kinematic models. Next, we turn our focus to the development of accessible and reproducible robotic platforms for scientific research. We propose a new concept for reproducible robotics research that integrates development and benchmarking, so that reproducibility is obtained "by design" from the beginning of the research and development process. We then propose a framework called SHARC (SHared Autonomy for Remote Collaboration), to improve accessibility for underwater robotic intervention operations. SHARC allows multiple remote scientists to efficiently plan and execute high-level sampling procedures using an underwater manipulator while deferring low-level control to the robot. Lastly, we developed the first hardware-based MOOC in AI and robotics. This course allows learners to study autonomy hands-on by making real robots make their own decisions and accomplish broadly defined tasks. We design a new robotic platform from the ground up to support this new learning experience. A fully browser-based interface, based on leading tools and technologies for code development, testing, validation, and deployment serves to maximize the accessibility of these educational resources.

This paper tackles the task of legal extractive summarization using a dataset of 430K U.S. court opinions with key passages annotated. According to automated summary quality metrics, the reinforcement-learning-based MemSum model is best and even out-performs transformer-based models. In turn, expert human evaluation shows that MemSum summaries effectively capture the key points of lengthy court opinions. Motivated by these results, we open-source our models to the general public. This represents progress towards democratizing law and making U.S. court opinions more accessible to the general public.

When a problem has more than one solution, it is often important, depending on the underlying context, to enumerate (i.e., to list) them all. Even when the enumeration can be done in polynomial delay, that is, spending no more than polynomial time to go from one solution to the next, this can be costly as the number of solutions themselves may be huge, including sometimes exponential. Furthermore, depending on the application, many of these solutions can be considered equivalent. The problem of an efficient enumeration of the equivalence classes or of one representative per class (without generating all the solutions), although identified as a need in many areas, has been addressed only for very few specific cases. In this paper, we provide a general framework that solves this problem in polynomial delay for a wide variety of contexts, including optimization ones that can be addressed by dynamic programming algorithms, and for certain types of equivalence relations between solutions.

Video games are one of the richest and most popular forms of human-computer interaction and, hence, their role is critical for our understanding of human behaviour and affect at a large scale. As artificial intelligence (AI) tools are gradually adopted by the game industry a series of ethical concerns arise. Such concerns, however, have so far not been extensively discussed in a video game context. Motivated by the lack of a comprehensive review of the ethics of AI as applied to games, we survey the current state of the art in this area and discuss ethical considerations of these systems from the holistic perspective of the affective loop. Through the components of this loop, we study the ethical challenges that AI faces in video game development. Elicitation highlights the ethical boundaries of artificially induced emotions; sensing showcases the trade-off between privacy and safe gaming spaces; and detection, as utilised during in-game adaptation, poses challenges to transparency and ownership. This paper calls for an open dialogue and action for the games of today and the virtual spaces of the future. By setting an appropriate framework we aim to protect users and to guide developers towards safer and better experiences for their customers.

Despite the advancement of machine learning techniques in recent years, state-of-the-art systems lack robustness to "real world" events, where the input distributions and tasks encountered by the deployed systems will not be limited to the original training context, and systems will instead need to adapt to novel distributions and tasks while deployed. This critical gap may be addressed through the development of "Lifelong Learning" systems that are capable of 1) Continuous Learning, 2) Transfer and Adaptation, and 3) Scalability. Unfortunately, efforts to improve these capabilities are typically treated as distinct areas of research that are assessed independently, without regard to the impact of each separate capability on other aspects of the system. We instead propose a holistic approach, using a suite of metrics and an evaluation framework to assess Lifelong Learning in a principled way that is agnostic to specific domains or system techniques. Through five case studies, we show that this suite of metrics can inform the development of varied and complex Lifelong Learning systems. We highlight how the proposed suite of metrics quantifies performance trade-offs present during Lifelong Learning system development - both the widely discussed Stability-Plasticity dilemma and the newly proposed relationship between Sample Efficient and Robust Learning. Further, we make recommendations for the formulation and use of metrics to guide the continuing development of Lifelong Learning systems and assess their progress in the future.

We present a new method to learn video representations from large-scale unlabeled video data. Ideally, this representation will be generic and transferable, directly usable for new tasks such as action recognition and zero or few-shot learning. We formulate unsupervised representation learning as a multi-modal, multi-task learning problem, where the representations are shared across different modalities via distillation. Further, we introduce the concept of loss function evolution by using an evolutionary search algorithm to automatically find optimal combination of loss functions capturing many (self-supervised) tasks and modalities. Thirdly, we propose an unsupervised representation evaluation metric using distribution matching to a large unlabeled dataset as a prior constraint, based on Zipf's law. This unsupervised constraint, which is not guided by any labeling, produces similar results to weakly-supervised, task-specific ones. The proposed unsupervised representation learning results in a single RGB network and outperforms previous methods. Notably, it is also more effective than several label-based methods (e.g., ImageNet), with the exception of large, fully labeled video datasets.

北京阿比特科技有限公司