亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Image learning and colorization are hot spots in multimedia domain. Inspired by the learning capability of humans, in this paper, we propose an automatic colorization method with a learning framework. This method can be viewed as a hybrid of exemplar-based and learning-based method, and it decouples the colorization process and learning process so as to generate various color styles for the same gray image. The matching process in the exemplar-based colorization method can be regarded as a parameterized function, and we employ a large amount of color images as the training samples to fit the parameters. During the training process, the color images are the ground truths, and we learn the optimal parameters for the matching process by minimizing the errors in terms of the parameters for the matching function. To deal with images with various compositions, a global feature is introduced, which can be used to classify the images with respect to their compositions, and then learn the optimal matching parameters for each image category individually. What's more, a spatial consistency based post-processing is design to smooth the extracted color information from the reference image to remove matching errors. Extensive experiments are conducted to verify the effectiveness of the method, and it achieves comparable performance against the state-of-the-art colorization algorithms.

相關內容

In this paper, we focus on unsupervised learning for Video Object Segmentation (VOS) which learns visual correspondence (i.e., the similarity between pixel-level features) from unlabeled videos. Previous methods are mainly based on the contrastive learning paradigm, which optimize either in image level or pixel level. Image-level optimization (e.g., the spatially pooled feature of ResNet) learns robust high-level semantics but is sub-optimal since the pixel-level features are optimized implicitly. By contrast, pixel-level optimization is more explicit, however, it is sensitive to the visual quality of training data and is not robust to object deformation. To complementarily perform these two levels of optimization in a unified framework, we propose the In-aNd-Out (INO) generative learning from a purely generative perspective with the help of naturally designed class tokens and patch tokens in Vision Transformer (ViT). Specifically, for image-level optimization, we force the out-view imagination from local to global views on class tokens, which helps capture high-level semantics, and we name it as out-generative learning. As to pixel-level optimization, we perform in-view masked image modeling on patch tokens, which recovers the corrupted parts of an image via inferring its fine-grained structure, and we term it as in-generative learning. To discover the temporal information better, we additionally force the inter-frame consistency from both feature and affinity matrix levels. Extensive experiments on DAVIS-2017 val and YouTube-VOS 2018 val show that our INO outperforms previous state-of-the-art methods by significant margins. Code is available: //github.com/pansanity666/INO_VOS

A fundamental task in science is to design experiments that yield valuable insights about the system under study. Mathematically, these insights can be represented as a utility or risk function that shapes the value of conducting each experiment. We present PDBAL, a targeted active learning method that adaptively designs experiments to maximize scientific utility. PDBAL takes a user-specified risk function and combines it with a probabilistic model of the experimental outcomes to choose designs that rapidly converge on a high-utility model. We prove theoretical bounds on the label complexity of PDBAL and provide fast closed-form solutions for designing experiments with common exponential family likelihoods. In simulation studies, PDBAL consistently outperforms standard untargeted approaches that focus on maximizing expected information gain over the design space. Finally, we demonstrate the scientific potential of PDBAL through a study on a large cancer drug screen dataset where PDBAL quickly recovers the most efficacious drugs with a small fraction of the total number of experiments.

Unsupervised domain adaptation(UDA) has been applied to image semantic segmentation to solve the problem of domain offset. However, in some difficult categories with poor recognition accuracy, the segmentation effects are still not ideal. To this end, in this paper, Intra-subdomain adaptation adversarial learning segmentation method based on Dynamic Pseudo Labels(IDPL) is proposed. The whole process consists of 3 steps: Firstly, the instance-level pseudo label dynamic generation module is proposed, which fuses the class matching information in global classes and local instances, thus adaptively generating the optimal threshold for each class, obtaining high-quality pseudo labels. Secondly, the subdomain classifier module based on instance confidence is constructed, which can dynamically divide the target domain into easy and difficult subdomains according to the relative proportion of easy and difficult instances. Finally, the subdomain adversarial learning module based on self-attention is proposed. It uses multi-head self-attention to confront the easy and difficult subdomains at the class level with the help of generated high-quality pseudo labels, so as to focus on mining the features of difficult categories in the high-entropy region of target domain images, which promotes class-level conditional distribution alignment between the subdomains, improving the segmentation performance of difficult categories. For the difficult categories, the experimental results show that the performance of IDPL is significantly improved compared with other latest mainstream methods.

Multimodal ambiguity and color bleeding remain challenging in colorization. To tackle these problems, we propose a new GAN-based colorization approach PalGAN, integrated with palette estimation and chromatic attention. To circumvent the multimodality issue, we present a new colorization formulation that estimates a probabilistic palette from the input gray image first, then conducts color assignment conditioned on the palette through a generative model. Further, we handle color bleeding with chromatic attention. It studies color affinities by considering both semantic and intensity correlation. In extensive experiments, PalGAN outperforms state-of-the-arts in quantitative evaluation and visual comparison, delivering notable diverse, contrastive, and edge-preserving appearances. With the palette design, our method enables color transfer between images even with irrelevant contexts.

Diffusion models (DMs) have achieved state-of-the-art results for image synthesis tasks as well as density estimation. Applied in the latent space of a powerful pretrained autoencoder (LDM), their immense computational requirements can be significantly reduced without sacrificing sampling quality. However, DMs and LDMs lack a semantically meaningful representation space as the diffusion process gradually destroys information in the latent variables. We introduce a framework for learning such representations with diffusion models (LRDM). To that end, a LDM is conditioned on the representation extracted from the clean image by a separate encoder. In particular, the DM and the representation encoder are trained jointly in order to learn rich representations specific to the generative denoising process. By introducing a tractable representation prior, we can efficiently sample from the representation distribution for unconditional image synthesis without training of any additional model. We demonstrate that i) competitive image generation results can be achieved with image-parameterized LDMs, ii) LRDMs are capable of learning semantically meaningful representations, allowing for faithful image reconstructions and semantic interpolations. Our implementation is available at //github.com/jeremiastraub/diffusion.

Large and diverse datasets have been the cornerstones of many impressive advancements in artificial intelligence. Intelligent creatures, however, learn by interacting with the environment, which changes the input sensory signals and the state of the environment. In this work, we aim to bring the best of both worlds and propose an algorithm that exhibits an exploratory behavior whilst it utilizes large diverse datasets. Our key idea is to leverage deep generative models that are pretrained on static datasets and introduce a dynamic model in the latent space. The transition dynamics simply mixes an action and a random sampled latent. It then applies an exponential moving average for temporal persistency, the resulting latent is decoded to image using pretrained generator. We then employ an unsupervised reinforcement learning algorithm to explore in this environment and perform unsupervised representation learning on the collected data. We further leverage the temporal information of this data to pair data points as a natural supervision for representation learning. Our experiments suggest that the learned representations can be successfully transferred to downstream tasks in both vision and reinforcement learning domains.

Contrastive learning models have achieved great success in unsupervised visual representation learning, which maximize the similarities between feature representations of different views of the same image, while minimize the similarities between feature representations of views of different images. In text summarization, the output summary is a shorter form of the input document and they have similar meanings. In this paper, we propose a contrastive learning model for supervised abstractive text summarization, where we view a document, its gold summary and its model generated summaries as different views of the same mean representation and maximize the similarities between them during training. We improve over a strong sequence-to-sequence text generation model (i.e., BART) on three different summarization datasets. Human evaluation also shows that our model achieves better faithfulness ratings compared to its counterpart without contrastive objectives.

Connecting Vision and Language plays an essential role in Generative Intelligence. For this reason, in the last few years, a large research effort has been devoted to image captioning, i.e. the task of describing images with syntactically and semantically meaningful sentences. Starting from 2015 the task has generally been addressed with pipelines composed of a visual encoding step and a language model for text generation. During these years, both components have evolved considerably through the exploitation of object regions, attributes, and relationships and the introduction of multi-modal connections, fully-attentive approaches, and BERT-like early-fusion strategies. However, regardless of the impressive results obtained, research in image captioning has not reached a conclusive answer yet. This work aims at providing a comprehensive overview and categorization of image captioning approaches, from visual encoding and text generation to training strategies, used datasets, and evaluation metrics. In this respect, we quantitatively compare many relevant state-of-the-art approaches to identify the most impactful technical innovations in image captioning architectures and training strategies. Moreover, many variants of the problem and its open challenges are analyzed and discussed. The final goal of this work is to serve as a tool for understanding the existing state-of-the-art and highlighting the future directions for an area of research where Computer Vision and Natural Language Processing can find an optimal synergy.

This work addresses a novel and challenging problem of estimating the full 3D hand shape and pose from a single RGB image. Most current methods in 3D hand analysis from monocular RGB images only focus on estimating the 3D locations of hand keypoints, which cannot fully express the 3D shape of hand. In contrast, we propose a Graph Convolutional Neural Network (Graph CNN) based method to reconstruct a full 3D mesh of hand surface that contains richer information of both 3D hand shape and pose. To train networks with full supervision, we create a large-scale synthetic dataset containing both ground truth 3D meshes and 3D poses. When fine-tuning the networks on real-world datasets without 3D ground truth, we propose a weakly-supervised approach by leveraging the depth map as a weak supervision in training. Through extensive evaluations on our proposed new datasets and two public datasets, we show that our proposed method can produce accurate and reasonable 3D hand mesh, and can achieve superior 3D hand pose estimation accuracy when compared with state-of-the-art methods.

Deep Convolutional Neural Networks have pushed the state-of-the art for semantic segmentation provided that a large amount of images together with pixel-wise annotations is available. Data collection is expensive and a solution to alleviate it is to use transfer learning. This reduces the amount of annotated data required for the network training but it does not get rid of this heavy processing step. We propose a method of transfer learning without annotations on the target task for datasets with redundant content and distinct pixel distributions. Our method takes advantage of the approximate content alignment of the images between two datasets when the approximation error prevents the reuse of annotation from one dataset to another. Given the annotations for only one dataset, we train a first network in a supervised manner. This network autonomously learns to generate deep data representations relevant to the semantic segmentation. Then the images in the new dataset, we train a new network to generate a deep data representation that matches the one from the first network on the previous dataset. The training consists in a regression between feature maps and does not require any annotations on the new dataset. We show that this method reaches performances similar to a classic transfer learning on the PASCAL VOC dataset with synthetic transformations.

北京阿比特科技有限公司