亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

The purpose of this book is to help you program shared-memory parallel systems without risking your sanity. Nevertheless, you should think of the information in this book as a foundation on which to build, rather than as a completed cathedral. Your mission, if you choose to accept, is to help make further progress in the exciting field of parallel programming-progress that will in time render this book obsolete. Parallel programming in the 21st century is no longer focused solely on science, research, and grand-challenge projects. And this is all to the good, because it means that parallel programming is becoming an engineering discipline. Therefore, as befits an engineering discipline, this book examines specific parallel-programming tasks and describes how to approach them. In some surprisingly common cases, these tasks can be automated. This book is written in the hope that presenting the engineering discipline underlying successful parallel-programming projects will free a new generation of parallel hackers from the need to slowly and painstakingly reinvent old wheels, enabling them to instead focus their energy and creativity on new frontiers. However, what you get from this book will be determined by what you put into it. It is hoped that simply reading this book will be helpful, and that working the Quick Quizzes will be even more helpful. However, the best results come from applying the techniques taught in this book to real-life problems. As always, practice makes perfect. But no matter how you approach it, we sincerely hope that parallel programming brings you at least as much fun, excitement, and challenge that it has brought to us!

相關內容

《工程》是中國工程院(CAE)于2015年推出的國際開放存取期刊。其目的是提供一個高水平的平臺,傳播和分享工程研發的前沿進展、當前主要研究成果和關鍵成果;報告工程科學的進展,討論工程發展的熱點、興趣領域、挑戰和前景,在工程中考慮人與環境的福祉和倫理道德,鼓勵具有深遠經濟和社會意義的工程突破和創新,使之達到國際先進水平,成為新的生產力,從而改變世界,造福人類,創造新的未來。 期刊鏈接: · SSL · 表示 · 語音合成 · 損失 ·
2023 年 8 月 2 日

While FastSpeech2 aims to integrate aspects of speech such as pitch, energy, and duration as conditional inputs, it still leaves scope for richer representations. As a part of this work, we leverage representations from various Self-Supervised Learning (SSL) models to enhance the quality of the synthesized speech. In particular, we pass the FastSpeech2 encoder's length-regulated outputs through a series of encoder layers with the objective of reconstructing the SSL representations. In the SALTTS-parallel implementation, the representations from this second encoder are used for an auxiliary reconstruction loss with the SSL features. The SALTTS-cascade implementation, however, passes these representations through the decoder in addition to having the reconstruction loss. The richness of speech characteristics from the SSL features reflects in the output speech quality, with the objective and subjective evaluation measures of the proposed approach outperforming the baseline FastSpeech2.

In this vision paper, we propose a shift in perspective for improving the effectiveness of similarity search. Rather than focusing solely on enhancing the data quality, particularly machine learning-generated embeddings, we advocate for a more comprehensive approach that also enhances the underpinning search mechanisms. We highlight three novel avenues that call for a redefinition of the similarity search problem: exploiting implicit data structures and distributions, engaging users in an iterative feedback loop, and moving beyond a single query vector. These novel pathways have gained relevance in emerging applications such as large-scale language models, video clip retrieval, and data labeling. We discuss the corresponding research challenges posed by these new problem areas and share insights from our preliminary discoveries.

The research project aims to apply an integrated approach to natural language processing NLP to satisfaction surveys. It will focus on understanding and extracting relevant information from survey responses, analyzing feelings, and identifying recurring word patterns. NLP techniques will be used to determine emotional polarity, classify responses into positive, negative, or neutral categories, and use opinion mining to highlight participants opinions. This approach will help identify the most relevant aspects for participants and understand their opinions in relation to those specific aspects. A key component of the research project will be the analysis of word patterns in satisfaction survey responses using NPL. This analysis will provide a deeper understanding of feelings, opinions, and themes and trends present in respondents responses. The results obtained from this approach can be used to identify areas for improvement, understand respondents preferences, and make strategic decisions based on analysis to improve respondent satisfaction.

Transformer is a promising neural network learner, and has achieved great success in various machine learning tasks. Thanks to the recent prevalence of multimodal applications and big data, Transformer-based multimodal learning has become a hot topic in AI research. This paper presents a comprehensive survey of Transformer techniques oriented at multimodal data. The main contents of this survey include: (1) a background of multimodal learning, Transformer ecosystem, and the multimodal big data era, (2) a theoretical review of Vanilla Transformer, Vision Transformer, and multimodal Transformers, from a geometrically topological perspective, (3) a review of multimodal Transformer applications, via two important paradigms, i.e., for multimodal pretraining and for specific multimodal tasks, (4) a summary of the common challenges and designs shared by the multimodal Transformer models and applications, and (5) a discussion of open problems and potential research directions for the community.

Transformers have achieved superior performances in many tasks in natural language processing and computer vision, which also intrigues great interests in the time series community. Among multiple advantages of transformers, the ability to capture long-range dependencies and interactions is especially attractive for time series modeling, leading to exciting progress in various time series applications. In this paper, we systematically review transformer schemes for time series modeling by highlighting their strengths as well as limitations through a new taxonomy to summarize existing time series transformers in two perspectives. From the perspective of network modifications, we summarize the adaptations of module level and architecture level of the time series transformers. From the perspective of applications, we categorize time series transformers based on common tasks including forecasting, anomaly detection, and classification. Empirically, we perform robust analysis, model size analysis, and seasonal-trend decomposition analysis to study how Transformers perform in time series. Finally, we discuss and suggest future directions to provide useful research guidance. To the best of our knowledge, this paper is the first work to comprehensively and systematically summarize the recent advances of Transformers for modeling time series data. We hope this survey will ignite further research interests in time series Transformers.

Interpretability in machine learning (ML) is crucial for high stakes decisions and troubleshooting. In this work, we provide fundamental principles for interpretable ML, and dispel common misunderstandings that dilute the importance of this crucial topic. We also identify 10 technical challenge areas in interpretable machine learning and provide history and background on each problem. Some of these problems are classically important, and some are recent problems that have arisen in the last few years. These problems are: (1) Optimizing sparse logical models such as decision trees; (2) Optimization of scoring systems; (3) Placing constraints into generalized additive models to encourage sparsity and better interpretability; (4) Modern case-based reasoning, including neural networks and matching for causal inference; (5) Complete supervised disentanglement of neural networks; (6) Complete or even partial unsupervised disentanglement of neural networks; (7) Dimensionality reduction for data visualization; (8) Machine learning models that can incorporate physics and other generative or causal constraints; (9) Characterization of the "Rashomon set" of good models; and (10) Interpretable reinforcement learning. This survey is suitable as a starting point for statisticians and computer scientists interested in working in interpretable machine learning.

Sequential recommendation aims to leverage users' historical behaviors to predict their next interaction. Existing works have not yet addressed two main challenges in sequential recommendation. First, user behaviors in their rich historical sequences are often implicit and noisy preference signals, they cannot sufficiently reflect users' actual preferences. In addition, users' dynamic preferences often change rapidly over time, and hence it is difficult to capture user patterns in their historical sequences. In this work, we propose a graph neural network model called SURGE (short for SeqUential Recommendation with Graph neural nEtworks) to address these two issues. Specifically, SURGE integrates different types of preferences in long-term user behaviors into clusters in the graph by re-constructing loose item sequences into tight item-item interest graphs based on metric learning. This helps explicitly distinguish users' core interests, by forming dense clusters in the interest graph. Then, we perform cluster-aware and query-aware graph convolutional propagation and graph pooling on the constructed graph. It dynamically fuses and extracts users' current activated core interests from noisy user behavior sequences. We conduct extensive experiments on both public and proprietary industrial datasets. Experimental results demonstrate significant performance gains of our proposed method compared to state-of-the-art methods. Further studies on sequence length confirm that our method can model long behavioral sequences effectively and efficiently.

This paper surveys the field of transfer learning in the problem setting of Reinforcement Learning (RL). RL has been the key solution to sequential decision-making problems. Along with the fast advance of RL in various domains. including robotics and game-playing, transfer learning arises as an important technique to assist RL by leveraging and transferring external expertise to boost the learning process. In this survey, we review the central issues of transfer learning in the RL domain, providing a systematic categorization of its state-of-the-art techniques. We analyze their goals, methodologies, applications, and the RL frameworks under which these transfer learning techniques would be approachable. We discuss the relationship between transfer learning and other relevant topics from an RL perspective and also explore the potential challenges as well as future development directions for transfer learning in RL.

Machine learning techniques have deeply rooted in our everyday life. However, since it is knowledge- and labor-intensive to pursue good learning performance, human experts are heavily involved in every aspect of machine learning. In order to make machine learning techniques easier to apply and reduce the demand for experienced human experts, automated machine learning (AutoML) has emerged as a hot topic with both industrial and academic interest. In this paper, we provide an up to date survey on AutoML. First, we introduce and define the AutoML problem, with inspiration from both realms of automation and machine learning. Then, we propose a general AutoML framework that not only covers most existing approaches to date but also can guide the design for new methods. Subsequently, we categorize and review the existing works from two aspects, i.e., the problem setup and the employed techniques. Finally, we provide a detailed analysis of AutoML approaches and explain the reasons underneath their successful applications. We hope this survey can serve as not only an insightful guideline for AutoML beginners but also an inspiration for future research.

We study the problem of learning to reason in large scale knowledge graphs (KGs). More specifically, we describe a novel reinforcement learning framework for learning multi-hop relational paths: we use a policy-based agent with continuous states based on knowledge graph embeddings, which reasons in a KG vector space by sampling the most promising relation to extend its path. In contrast to prior work, our approach includes a reward function that takes the accuracy, diversity, and efficiency into consideration. Experimentally, we show that our proposed method outperforms a path-ranking based algorithm and knowledge graph embedding methods on Freebase and Never-Ending Language Learning datasets.

北京阿比特科技有限公司