亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

This article explores additive codes with one-rank hull, offering key insights and constructions. It gives a characterization of the hull of an additive code $C$ in terms of its generator matrix and establishes a connection between self-orthogonal elements and solutions of quadratic forms. Using self-orthogonal elements, the existence of a one-rank hull code is demonstrated. The article provides a precise count of self-orthogonal elements for any duality over the finite field $\mathbb{F}_q$, particularly odd primes. Additionally, construction methods for small-rank hull codes are introduced. The highest possible minimum distance among additive one-rank hull codes is denoted by $d_1[n,k]_{p^e,M}$. The value of $d_1[n,k]_{p^e,M}$ for $k=1,2$ and $n\geq 2$ with respect to any duality $M$ over any finite field $\mathbb{F}_{p^e}$ is determined. Also, the highest possible minimum distance for Quaternary one-rank hull code is determined over non-symmetric dualities for length $1\leq n\leq 10$.

相關內容

Product reviews often contain a large number of implicit aspects and object-attribute co-existence cases. Unfortunately, many existing studies in Aspect-Based Sentiment Analysis (ABSA) have overlooked this issue, which can make it difficult to extract opinions comprehensively and fairly. In this paper, we propose a new task called Entity-Aspect-Opinion-Sentiment Quadruple Extraction (EASQE), which aims to hierarchically decompose aspect terms into entities and aspects to avoid information loss, non-exclusive annotations, and opinion misunderstandings in ABSA tasks. To facilitate research in this new task, we have constructed four datasets (Res14-EASQE, Res15-EASQE, Res16-EASQE, and Lap14-EASQE) based on the SemEval Restaurant and Laptop datasets. We have also proposed a novel two-stage sequence-tagging based Trigger-Opinion framework as the baseline for the EASQE task. Empirical evaluations show that our Trigger-Opinion framework can generate satisfactory EASQE results and can also be applied to other ABSA tasks, significantly outperforming state-of-the-art methods. We have made the four datasets and source code of Trigger-Opinion publicly available to facilitate further research in this area.

We introduce the notion of the Lie derivative in the context of dual quaternions that represent rigid motions and twists. First we define the wrench in terms of dual quaternions. Then we show how the Lie derivative helps understand how actuators affect an end effector in parallel robots, and make it explicit in the two cases case of Stewart Platforms, and cable-driven parallel robots. We also show how to use Lie derivatives with the Newton-Raphson Method to solve the forward kinematic problem for over constrained parallel actuators. Finally, we derive the equations of motion of the end effector in dual quaternion form, which include the effect of inertia from the actuators.

We determine the complexity of second-order HyperLTL satisfiability and model-checking: Both are as hard as truth in third-order arithmetic.

Entities like person, location, organization are important for literary text analysis. The lack of annotated data hinders the progress of named entity recognition (NER) in literary domain. To promote the research of literary NER, we build the largest multi-genre literary NER corpus containing 263,135 entities in 105,851 sentences from 260 online Chinese novels spanning 13 different genres. Based on the corpus, we investigate characteristics of entities from different genres. We propose several baseline NER models and conduct cross-genre and cross-domain experiments. Experimental results show that genre difference significantly impact NER performance though not as much as domain difference like literary domain and news domain. Compared with NER in news domain, literary NER still needs much improvement and the Out-of-Vocabulary (OOV) problem is more challenging due to the high variety of entities in literary works.

Structural discovery amongst a set of variables is of interest in both static and dynamic settings. In the presence of lead-lag dependencies in the data, the dynamics of the system can be represented through a structural equation model (SEM) that simultaneously captures the contemporaneous and temporal relationships amongst the variables, with the former encoded through a directed acyclic graph (DAG) for model identification. In many real applications, a partial ordering amongst the nodes of the DAG is available, which makes it either beneficial or imperative to incorporate it as a constraint in the problem formulation. This paper develops an algorithm that can seamlessly incorporate a priori partial ordering information for solving a linear SEM (also known as Structural Vector Autoregression) under a high-dimensional setting. The proposed algorithm is provably convergent to a stationary point, and exhibits competitive performance on both synthetic and real data sets.

This paper introduces a novel computational approach termed the Reduced Augmentation Implicit Low-rank (RAIL) method by investigating two predominant research directions in low-rank solutions to time-dependent partial differential equations (PDEs): dynamical low-rank (DLR), and step and truncation (SAT) tensor methods. The RAIL method, along with the development of the SAT approach, is designed to enhance the efficiency of traditional full-rank implicit solvers from method-of-lines discretizations of time-dependent PDEs, while maintaining accuracy and stability. We consider spectral methods for spatial discretization, and diagonally implicit Runge-Kutta (DIRK) and implicit-explicit (IMEX) RK methods for time discretization. The efficiency gain is achieved by investigating low-rank structures within solutions at each RK stage using a singular value decomposition (SVD). In particular, we develop a reduced augmentation procedure to predict the basis functions to construct projection subspaces. This procedure balances algorithm accuracy and efficiency by incorporating as many bases as possible from previous RK stages and predictions, and by optimizing the basis representation through SVD truncation. As such, one can form implicit schemes for updating basis functions in a dimension-by-dimension manner, similar in spirit to the K-L step in the DLR framework. We also apply a globally mass conservative post-processing step at the end of each RK stage. We validate the RAIL method through numerical simulations of advection-diffusion problems and a Fokker-Planck model, showcasing its ability to efficiently handle time-dependent PDEs while maintaining global mass conservation. Our approach generalizes and bridges the DLR and SAT approaches, offering a comprehensive framework for efficiently and accurately solving time-dependent PDEs with implicit treatment.

The Lorenz curve portrays the inequality of income distribution. In this article, we develop three modified empirical likelihood (EL) approaches including adjusted empirical likelihood, transformed empirical likelihood, and transformed adjusted empirical likelihood to construct confidence intervals for the generalized Lorenz ordinate. We have shown that the limiting distribution of the modified EL ratio statistics for the generalized Lorenz ordinate follows the scaled Chi-Squared distributions with one degree of freedom. The coverage probabilities and mean lengths of confidence intervals are compared of the proposed methods with the traditional EL method through simulations under various scenarios. Finally, the proposed methods are illustrated using a real data application to construct confidence intervals.

5G and Beyond Networks become increasingly complex and heterogeneous, with diversified and high requirements from a wide variety of emerging applications. The complexity and diversity of Telecom networks place an increasing strain on maintenance and operation efforts. Moreover, the strict security and privacy requirements present a challenge for mobile operators to leverage network data. To detect network faults, and mitigate future failures, prior work focused on leveraging traditional ML/DL methods to locate anomalies in networks. The current approaches, although powerful, do not consider the intertwined nature of embedded and software-intensive Radio Access Network systems. In this paper, we propose a Bi-level Federated Graph Neural Network anomaly detection and diagnosis model that is able to detect anomalies in Telecom networks in a privacy-preserving manner, while minimizing communication costs. Our method revolves around conceptualizing Telecom data as a bi-level temporal Graph Neural Networks. The first graph captures the interactions between different RAN nodes that are exposed to different deployment scenarios in the network, while each individual Radio Access Network node is further elaborated into its software (SW) execution graph. Additionally, we use Federated Learning to address privacy and security limitations. Furthermore, we study the performance of anomaly detection model under three settings: (1) Centralized (2) Federated Learning and (3) Personalized Federated Learning using real-world data from an operational network. Our comprehensive experiments showed that Personalized Federated Temporal Graph Neural Networks method outperforms the most commonly used techniques for Anomaly Detection.

Artificial Intelligence (AI) is one of the most transformative technologies of the 21st century. The extent and scope of future AI capabilities remain a key uncertainty, with widespread disagreement on timelines and potential impacts. As nations and technology companies race toward greater complexity and autonomy in AI systems, there are concerns over the extent of integration and oversight of opaque AI decision processes. This is especially true in the subfield of machine learning (ML), where systems learn to optimize objectives without human assistance. Objectives can be imperfectly specified or executed in an unexpected or potentially harmful way. This becomes more concerning as systems increase in power and autonomy, where an abrupt capability jump could result in unexpected shifts in power dynamics or even catastrophic failures. This study presents a hierarchical complex systems framework to model AI risk and provide a template for alternative futures analysis. Survey data were collected from domain experts in the public and private sectors to classify AI impact and likelihood. The results show increased uncertainty over the powerful AI agent scenario, confidence in multiagent environments, and increased concern over AI alignment failures and influence-seeking behavior.

Generating high-quality summaries for chat dialogs often requires large labeled datasets. We propose a method to efficiently use unlabeled data for extractive summarization of customer-agent dialogs. In our method, we frame summarization as a question-answering problem and use state-of-the-art large language models (LLMs) to generate pseudo-labels for a dialog. We then use these pseudo-labels to fine-tune a chat summarization model, effectively transferring knowledge from the large LLM into a smaller specialized model. We demonstrate our method on the \tweetsumm dataset, and show that using 10% of the original labelled data set we can achieve 65.9/57.0/61.0 ROUGE-1/-2/-L, whereas the current state-of-the-art trained on the entire training data set obtains 65.16/55.81/64.37 ROUGE-1/-2/-L. In other words, in the worst case (i.e., ROUGE-L) we still effectively retain 94.7% of the performance while using only 10% of the data.

北京阿比特科技有限公司