亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We consider the problem of solving a family of parametric mixed-integer linear optimization problems where some entries in the input data change. We introduce the concept of cutting-plane layer (CPL), i.e., a differentiable cutting-plane generator mapping the problem data and previous iterates to cutting planes. We propose a CPL implementation to generate split cuts, and by combining several CPLs, we devise a differentiable cutting-plane algorithm that exploits the repeated nature of parametric instances. In an offline phase, we train our algorithm by updating the internal parameters controlling the CPLs, thus altering cut generation. Once trained, our algorithm computes, with predictable execution times and a fixed number of cuts, solutions with low integrality gaps. Preliminary computational tests show that our algorithm generalizes on unseen instances and captures underlying parametric structures.

相關內容

We develop a general theory to optimize the frequentist regret for sequential learning problems, where efficient bandit and reinforcement learning algorithms can be derived from unified Bayesian principles. We propose a novel optimization approach to generate "algorithmic beliefs" at each round, and use Bayesian posteriors to make decisions. The optimization objective to create "algorithmic beliefs," which we term "Algorithmic Information Ratio," represents an intrinsic complexity measure that effectively characterizes the frequentist regret of any algorithm. To the best of our knowledge, this is the first systematical approach to make Bayesian-type algorithms prior-free and applicable to adversarial settings, in a generic and optimal manner. Moreover, the algorithms are simple and often efficient to implement. As a major application, we present a novel algorithm for multi-armed bandits that achieves the "best-of-all-worlds" empirical performance in the stochastic, adversarial, and non-stationary environments. And we illustrate how these principles can be used in linear bandits, bandit convex optimization, and reinforcement learning.

Abductive reasoning is logical reasoning that makes educated guesses to infer the most likely reasons to explain the observations. However, the abductive logical reasoning over knowledge graphs (KGs) is underexplored in KG literature. In this paper, we initially and formally raise the task of abductive logical reasoning over KGs, which involves inferring the most probable logic hypothesis from the KGs to explain an observed entity set. Traditional approaches use symbolic methods, like searching, to tackle the knowledge graph problem. However, the symbolic methods are unsuitable for this task, because the KGs are naturally incomplete, and the logical hypotheses can be complex with multiple variables and relations. To address these issues, we propose a generative approach to create logical expressions based on observations. First, we sample hypothesis-observation pairs from the KG and use supervised training to train a generative model that generates hypotheses from observations. Since supervised learning only minimizes structural differences between generated and reference hypotheses, higher structural similarity does not guarantee a better explanation for observations. To tackle this issue, we introduce the Reinforcement Learning from the Knowledge Graph (RLF-KG) method, which minimizes the differences between observations and conclusions drawn from the generated hypotheses according to the KG. Experimental results demonstrate that transformer-based generative models can generate logical explanations robustly and efficiently. Moreover, with the assistance of RLF-KG, the generated hypothesis can provide better explanations for the observations, and the method of supervised learning with RLF-KG achieves state-of-the-art results on abductive knowledge graph reasoning on three widely used KGs.

This tutorial aims to establish connections between polynomial modular multiplication over a ring to circular convolution and discrete Fourier transform (DFT). The main goal is to extend the well-known theory of DFT in signal processing (SP) to other applications involving polynomials in a ring such as homomorphic encryption (HE). HE allows any third party to operate on the encrypted data without decrypting it in advance. Since most HE schemes are constructed from the ring-learning with errors (R-LWE) problem, efficient polynomial modular multiplication implementation becomes critical. Any improvement in the execution of these building blocks would have significant consequences for the global performance of HE. This lecture note describes three approaches to implementing long polynomial modular multiplication using the number theoretic transform (NTT): zero-padded convolution, without zero-padding, also referred to as negative wrapped convolution (NWC), and low-complexity NWC (LC-NWC).

Bias correction can often improve the finite sample performance of estimators. We show that the choice of bias correction method has no effect on the higher-order variance of semiparametrically efficient parametric estimators, so long as the estimate of the bias is asymptotically linear. It is also shown that bootstrap, jackknife, and analytical bias estimates are asymptotically linear for estimators with higher-order expansions of a standard form. In particular, we find that for a variety of estimators the straightforward bootstrap bias correction gives the same higher-order variance as more complicated analytical or jackknife bias corrections. In contrast, bias corrections that do not estimate the bias at the parametric rate, such as the split-sample jackknife, result in larger higher-order variances in the i.i.d. setting we focus on. For both a cross-sectional MLE and a panel model with individual fixed effects, we show that the split-sample jackknife has a higher-order variance term that is twice as large as that of the `leave-one-out' jackknife.

Physics-informed neural networks (PINNs) have shown promising potential for solving partial differential equations (PDEs) using deep learning. However, PINNs face training difficulties for evolutionary PDEs, particularly for dynamical systems whose solutions exhibit multi-scale or turbulent behavior over time. The reason is that PINNs may violate the temporal causality property since all the temporal features in the PINNs loss are trained simultaneously. This paper proposes to use implicit time differencing schemes to enforce temporal causality, and use transfer learning to sequentially update the PINNs in space as surrogates for PDE solutions in different time frames. The evolving PINNs are better able to capture the varying complexities of the evolutionary equations, while only requiring minor updates between adjacent time frames. Our method is theoretically proven to be convergent if the time step is small and each PINN in different time frames is well-trained. In addition, we provide state-of-the-art (SOTA) numerical results for a variety of benchmarks for which existing PINNs formulations may fail or be inefficient. We demonstrate that the proposed method improves the accuracy of PINNs approximation for evolutionary PDEs and improves efficiency by a factor of 4-40x.

For parameter estimation of continuous and discrete distributions, we propose a generalization of the method of moments (MM), where Stein identities are utilized for improved estimation performance. The construction of these Stein-type MM-estimators makes use of a weight function as implied by an appropriate form of the Stein identity. Our general approach as well as potential benefits thereof are first illustrated by the simple example of the exponential distribution. Afterward, we investigate the more sophisticated two-parameter inverse Gaussian distribution and the two-parameter negative-binomial distribution in great detail, together with illustrative real-world data examples. Given an appropriate choice of the respective weight functions, their Stein-MM estimators, which are defined by simple closed-form formulas and allow for closed-form asymptotic computations, exhibit a better performance regarding bias and mean squared error than competing estimators.

Conventional entity typing approaches are based on independent classification paradigms, which make them difficult to recognize inter-dependent, long-tailed and fine-grained entity types. In this paper, we argue that the implicitly entailed extrinsic and intrinsic dependencies between labels can provide critical knowledge to tackle the above challenges. To this end, we propose \emph{Label Reasoning Network(LRN)}, which sequentially reasons fine-grained entity labels by discovering and exploiting label dependencies knowledge entailed in the data. Specifically, LRN utilizes an auto-regressive network to conduct deductive reasoning and a bipartite attribute graph to conduct inductive reasoning between labels, which can effectively model, learn and reason complex label dependencies in a sequence-to-set, end-to-end manner. Experiments show that LRN achieves the state-of-the-art performance on standard ultra fine-grained entity typing benchmarks, and can also resolve the long tail label problem effectively.

Humans perceive the world by concurrently processing and fusing high-dimensional inputs from multiple modalities such as vision and audio. Machine perception models, in stark contrast, are typically modality-specific and optimised for unimodal benchmarks, and hence late-stage fusion of final representations or predictions from each modality (`late-fusion') is still a dominant paradigm for multimodal video classification. Instead, we introduce a novel transformer based architecture that uses `fusion bottlenecks' for modality fusion at multiple layers. Compared to traditional pairwise self-attention, our model forces information between different modalities to pass through a small number of bottleneck latents, requiring the model to collate and condense the most relevant information in each modality and only share what is necessary. We find that such a strategy improves fusion performance, at the same time reducing computational cost. We conduct thorough ablation studies, and achieve state-of-the-art results on multiple audio-visual classification benchmarks including Audioset, Epic-Kitchens and VGGSound. All code and models will be released.

Heterogeneous graph neural networks (HGNNs) as an emerging technique have shown superior capacity of dealing with heterogeneous information network (HIN). However, most HGNNs follow a semi-supervised learning manner, which notably limits their wide use in reality since labels are usually scarce in real applications. Recently, contrastive learning, a self-supervised method, becomes one of the most exciting learning paradigms and shows great potential when there are no labels. In this paper, we study the problem of self-supervised HGNNs and propose a novel co-contrastive learning mechanism for HGNNs, named HeCo. Different from traditional contrastive learning which only focuses on contrasting positive and negative samples, HeCo employs cross-viewcontrastive mechanism. Specifically, two views of a HIN (network schema and meta-path views) are proposed to learn node embeddings, so as to capture both of local and high-order structures simultaneously. Then the cross-view contrastive learning, as well as a view mask mechanism, is proposed, which is able to extract the positive and negative embeddings from two views. This enables the two views to collaboratively supervise each other and finally learn high-level node embeddings. Moreover, two extensions of HeCo are designed to generate harder negative samples with high quality, which further boosts the performance of HeCo. Extensive experiments conducted on a variety of real-world networks show the superior performance of the proposed methods over the state-of-the-arts.

Due to their inherent capability in semantic alignment of aspects and their context words, attention mechanism and Convolutional Neural Networks (CNNs) are widely applied for aspect-based sentiment classification. However, these models lack a mechanism to account for relevant syntactical constraints and long-range word dependencies, and hence may mistakenly recognize syntactically irrelevant contextual words as clues for judging aspect sentiment. To tackle this problem, we propose to build a Graph Convolutional Network (GCN) over the dependency tree of a sentence to exploit syntactical information and word dependencies. Based on it, a novel aspect-specific sentiment classification framework is raised. Experiments on three benchmarking collections illustrate that our proposed model has comparable effectiveness to a range of state-of-the-art models, and further demonstrate that both syntactical information and long-range word dependencies are properly captured by the graph convolution structure.

北京阿比特科技有限公司