Neural abstractive summarization models make summaries in an end-to-end manner, and little is known about how the source information is actually converted into summaries. In this paper, we define input sentences that contain essential information in the generated summary as $\textit{source sentences}$ and study how abstractive summaries are made by analyzing the source sentences. To this end, we annotate source sentences for reference summaries and system summaries generated by PEGASUS on document-summary pairs sampled from the CNN/DailyMail and XSum datasets. We also formulate automatic source sentence detection and compare multiple methods to establish a strong baseline for the task. Experimental results show that the perplexity-based method performs well in highly abstractive settings, while similarity-based methods perform robustly in relatively extractive settings. Our code and data are available at //github.com/suhara/sourcesum.
Counting (p,q)-bicliques in bipartite graphs poses a foundational challenge with broad applications, from densest subgraph discovery in algorithmic research to personalized content recommendation in practical scenarios. Despite its significance, current leading (p,q)-biclique counting algorithms fall short, particularly when faced with larger graph sizes and clique scales. Fortunately, the problem's inherent structure, allowing for the independent counting of each biclique starting from every vertex, combined with a substantial set intersections, makes it highly amenable to parallelization. Recent successes in GPU-accelerated algorithms across various domains motivate our exploration into harnessing the parallelism power of GPUs to efficiently address the (p,q)-biclique counting challenge. We introduce GBC (GPU-based Biclique Counting), a novel approach designed to enable efficient and scalable (p,q)-biclique counting on GPUs. To address major bottleneck arising from redundant comparisons in set intersections (occupying an average of 90% of the runtime), we introduce a novel data structure that hashes adjacency lists into truncated bitmaps to enable efficient set intersection on GPUs via bit-wise AND operations. Our innovative hybrid DFS-BFS exploration strategy further enhances thread utilization and effectively manages memory constraints. A composite load balancing strategy, integrating pre-runtime and runtime workload allocation, ensures equitable distribution among threads. Additionally, we employ vertex reordering and graph partitioning strategies for improved compactness and scalability. Experimental evaluations on eight real-life and two synthetic datasets demonstrate that GBC outperforms state-of-the-art algorithms by a substantial margin. In particular, GBC achieves an average speedup of 497.8x, with the largest instance achieving a remarkable 1217.7x speedup when p = q = 8.
We present a mechanized embedding of higher-order logic (HOL) and algebraic data types (ADT) into first-order logic with ZFC axioms. We implement this in the Lisa proof assistant for schematic first-order logic and its library based on axiomatic set theory. HOL proof steps are implemented as proof producing tactics in Lisa, and the types are interpreted as sets, with function (or arrow) types coinciding with set-theoretic function spaces. The embedded HOL proofs, as opposed to being a layer over the existing proofs, are interoperable with the existing library. This yields a form of soft type system supporting top-level polymorphism and ADTs over set theory, and offer tools to reason about functions in set theory.
Machine learning models can perform well on in-distribution data but often fail on biased subgroups that are underrepresented in the training data, hindering the robustness of models for reliable applications. Such subgroups are typically unknown due to the absence of subgroup labels. Discovering biased subgroups is the key to understanding models' failure modes and further improving models' robustness. Most previous works of subgroup discovery make an implicit assumption that models only underperform on a single biased subgroup, which does not hold on in-the-wild data where multiple biased subgroups exist. In this work, we propose Decomposition, Interpretation, and Mitigation (DIM), a novel method to address a more challenging but also more practical problem of discovering multiple biased subgroups in image classifiers. Our approach decomposes the image features into multiple components that represent multiple subgroups. This decomposition is achieved via a bilinear dimension reduction method, Partial Least Square (PLS), guided by useful supervision from the image classifier. We further interpret the semantic meaning of each subgroup component by generating natural language descriptions using vision-language foundation models. Finally, DIM mitigates multiple biased subgroups simultaneously via two strategies, including the data- and model-centric strategies. Extensive experiments on CIFAR-100 and Breeds datasets demonstrate the effectiveness of DIM in discovering and mitigating multiple biased subgroups. Furthermore, DIM uncovers the failure modes of the classifier on Hard ImageNet, showcasing its broader applicability to understanding model bias in image classifiers. The code is available at //github.com/ZhangAIPI/DIM.
Convolution neural network is successful in pervasive vision tasks, including label distribution learning, which usually takes the form of learning an injection from the non-linear visual features to the well-defined labels. However, how the discrepancy between features is mapped to the label discrepancy is ambient, and its correctness is not guaranteed.To address these problems, we study the mathematical connection between feature and its label, presenting a general and simple framework for label distribution learning. We propose a so-called Triangular Distribution Transform (TDT) to build an injective function between feature and label, guaranteeing that any symmetric feature discrepancy linearly reflects the difference between labels. The proposed TDT can be used as a plug-in in mainstream backbone networks to address different label distribution learning tasks. Experiments on Facial Age Recognition, Illumination Chromaticity Estimation, and Aesthetics assessment show that TDT achieves on-par or better results than the prior arts.
Transformers have demonstrated effectiveness in in-context solving data-fitting problems from various (latent) models, as reported by Garg et al. However, the absence of an inherent iterative structure in the transformer architecture presents a challenge in emulating the iterative algorithms, which are commonly employed in traditional machine learning methods. To address this, we propose the utilization of looped transformer architecture and its associated training methodology, with the aim of incorporating iterative characteristics into the transformer architectures. Experimental results suggest that the looped transformer achieves performance comparable to the standard transformer in solving various data-fitting problems, while utilizing less than 10% of the parameter count.
We investigate the entity alignment problem with unlabeled dangling cases, meaning that there are entities in the source or target graph having no counterparts in the other, and those entities remain unlabeled. The problem arises when the source and target graphs are of different scales, and it is much cheaper to label the matchable pairs than the dangling entities. To solve the issue, we propose a novel GNN-based dangling detection and entity alignment framework. While the two tasks share the same GNN and are trained together, the detected dangling entities are removed in the alignment. Our framework is featured by a designed entity and relation attention mechanism for selective neighborhood aggregation in representation learning, as well as a positive-unlabeled learning loss for an unbiased estimation of dangling entities. Experimental results have shown that each component of our design contributes to the overall alignment performance which is comparable or superior to baselines, even if the baselines additionally have 30\% of the dangling entities labeled as training data.
As emerging digital assets, NFTs are susceptible to anomalous trading behaviors due to the lack of stringent regulatory mechanisms, potentially causing economic losses. In this paper, we conduct the first systematic analysis of four non-fungible tokens (NFT) markets. Specifically, we analyze more than 25 million transactions within these markets, to explore the evolution of wash trade activities. Furthermore, we propose a heuristic algorithm that integrates the network characteristics of transactions with behavioral analysis, to detect wash trading activities in NFT markets. Our findings indicate that NFT markets with incentivized structures exhibit higher proportions of wash trading volume compared to those without incentives. Notably, the LooksRare and X2Y2 markets are detected with wash trading volume proportions as high as 94.5% and 84.2%, respectively.
Geometric deep learning (GDL), which is based on neural network architectures that incorporate and process symmetry information, has emerged as a recent paradigm in artificial intelligence. GDL bears particular promise in molecular modeling applications, in which various molecular representations with different symmetry properties and levels of abstraction exist. This review provides a structured and harmonized overview of molecular GDL, highlighting its applications in drug discovery, chemical synthesis prediction, and quantum chemistry. Emphasis is placed on the relevance of the learned molecular features and their complementarity to well-established molecular descriptors. This review provides an overview of current challenges and opportunities, and presents a forecast of the future of GDL for molecular sciences.
Humans perceive the world by concurrently processing and fusing high-dimensional inputs from multiple modalities such as vision and audio. Machine perception models, in stark contrast, are typically modality-specific and optimised for unimodal benchmarks, and hence late-stage fusion of final representations or predictions from each modality (`late-fusion') is still a dominant paradigm for multimodal video classification. Instead, we introduce a novel transformer based architecture that uses `fusion bottlenecks' for modality fusion at multiple layers. Compared to traditional pairwise self-attention, our model forces information between different modalities to pass through a small number of bottleneck latents, requiring the model to collate and condense the most relevant information in each modality and only share what is necessary. We find that such a strategy improves fusion performance, at the same time reducing computational cost. We conduct thorough ablation studies, and achieve state-of-the-art results on multiple audio-visual classification benchmarks including Audioset, Epic-Kitchens and VGGSound. All code and models will be released.
Recent advances in maximizing mutual information (MI) between the source and target have demonstrated its effectiveness in text generation. However, previous works paid little attention to modeling the backward network of MI (i.e., dependency from the target to the source), which is crucial to the tightness of the variational information maximization lower bound. In this paper, we propose Adversarial Mutual Information (AMI): a text generation framework which is formed as a novel saddle point (min-max) optimization aiming to identify joint interactions between the source and target. Within this framework, the forward and backward networks are able to iteratively promote or demote each other's generated instances by comparing the real and synthetic data distributions. We also develop a latent noise sampling strategy that leverages random variations at the high-level semantic space to enhance the long term dependency in the generation process. Extensive experiments based on different text generation tasks demonstrate that the proposed AMI framework can significantly outperform several strong baselines, and we also show that AMI has potential to lead to a tighter lower bound of maximum mutual information for the variational information maximization problem.