Multi-robot navigation is the task of finding trajectories for a team of robotic agents to reach their destinations as quickly as possible without collisions. In this work, we introduce a new problem: fair-delay multi-robot navigation, which aims not only to enable such efficient, safe travels but also to equalize the travel delays among agents in terms of actual trajectories as compared to the best possible trajectories. The learning of a navigation policy to achieve this objective requires resolving a nontrivial credit assignment problem with robotic agents having continuous action spaces. Hence, we developed a new algorithm called Navigation with Counterfactual Fairness Filter (NCF2). With NCF2, each agent performs counterfactual inference on whether it can advance toward its goal or should stay still to let other agents go. Doing so allows us to effectively address the aforementioned credit assignment problem and improve fairness regarding travel delays while maintaining high efficiency and safety. Our extensive experimental results in several challenging multi-robot navigation environments demonstrate the greater effectiveness of NCF2 as compared to state-of-the-art fairness-aware multi-agent reinforcement learning methods. Our demo videos and code are available on the project webpage: //omron-sinicx.github.io/ncf2/
Agricultural robots have the potential to increase production yields and reduce costs by performing repetitive and time-consuming tasks. However, for robots to be effective, they must be able to navigate autonomously in fields or orchards without human intervention. In this paper, we introduce a navigation system that utilizes LiDAR and wheel encoder sensors for in-row, turn, and end-row navigation in row structured agricultural environments, such as vineyards. Our approach exploits the simple and precise geometrical structure of plants organized in parallel rows. We tested our system in both simulated and real environments, and the results demonstrate the effectiveness of our approach in achieving accurate and robust navigation. Our navigation system achieves mean displacement errors from the center line of 0.049 m and 0.372 m for in-row navigation in the simulated and real environments, respectively. In addition, we developed an end-row points detection that allows end-row navigation in vineyards, a task often ignored by most works.
There are two major challenges for scaling up robot navigation around dynamic obstacles: the complex interaction dynamics of the obstacles can be hard to model analytically, and the complexity of planning and control grows exponentially in the number of obstacles. Data-driven and learning-based methods are thus particularly valuable in this context. However, data-driven methods are sensitive to distribution drift, making it hard to train and generalize learned models across different obstacle densities. We propose a novel method for compositional learning of Sequential Neural Control Barrier models (SNCBFs) to achieve scalability. Our approach exploits an important observation: the spatial interaction patterns of multiple dynamic obstacles can be decomposed and predicted through temporal sequences of states for each obstacle. Through decomposition, we can generalize control policies trained only with a small number of obstacles, to environments where the obstacle density can be 100x higher. We demonstrate the benefits of the proposed methods in improving dynamic collision avoidance in comparison with existing methods including potential fields, end-to-end reinforcement learning, and model-predictive control. We also perform hardware experiments and show the practical effectiveness of the approach in the supplementary video.
The safe and efficient operation of Autonomous Mobile Robots (AMRs) in complex environments, such as manufacturing, logistics, and agriculture, necessitates accurate multi-object tracking and predictive collision avoidance. This paper presents algorithms and techniques for addressing these challenges using Lidar sensor data, emphasizing ensemble Kalman filter. The developed predictive collision avoidance algorithm employs the data provided by lidar sensors to track multiple objects and predict their velocities and future positions, enabling the AMR to navigate safely and effectively. A modification to the dynamic windowing approach is introduced to enhance the performance of the collision avoidance system. The overall system architecture encompasses object detection, multi-object tracking, and predictive collision avoidance control. The experimental results, obtained from both simulation and real-world data, demonstrate the effectiveness of the proposed methods in various scenarios, which lays the foundation for future research on global planners, other controllers, and the integration of additional sensors. This thesis contributes to the ongoing development of safe and efficient autonomous systems in complex and dynamic environments.
The goal of this work is to study waves interacting with partially immersed objects allowed to move freely in the vertical direction, and in a regime in which the propagation of the waves is described by the one dimensional Boussinesq-Abbott system. The problem can be reduced to a transmission problem for this Boussinesq system, in which the transmission conditions between the components of the domain at the left and at the right of the object are determined through the resolution of coupled forced ODEs in time satisfied by the vertical displacement of the object and the average discharge in the portion of the fluid located under the object. We propose a new extended formulation in which these ODEs are complemented by two other forced ODEs satisfied by the trace of the surface elevation at the contact points. The interest of this new extended formulation is that the forcing terms are easy to compute numerically and that the surface elevation at the contact points is furnished for free. Based on this formulation, we propose a second order scheme that involves a generalization of the MacCormack scheme with nonlocal flux and a source term, which is coupled to a second order Heun scheme for the ODEs. In order to validate this scheme, several explicit solutions for this wave-structure interaction problem are derived and can serve as benchmark for future codes. As a byproduct, our method provides a second order scheme for the generation of waves at the entrance of the numerical domain for the Boussinesq-Abbott system.
As artificial intelligence plays an increasingly substantial role in decisions affecting humans and society, the accountability of automated decision systems has been receiving increasing attention from researchers and practitioners. Fairness, which is concerned with eliminating unjust treatment and discrimination against individuals or sensitive groups, is a critical aspect of accountability. Yet, for evaluating fairness, there is a plethora of fairness metrics in the literature that employ different perspectives and assumptions that are often incompatible. This work focuses on group fairness. Most group fairness metrics desire a parity between selected statistics computed from confusion matrices belonging to different sensitive groups. Generalizing this intuition, this paper proposes a new equal confusion fairness test to check an automated decision system for fairness and a new confusion parity error to quantify the extent of any unfairness. To further analyze the source of potential unfairness, an appropriate post hoc analysis methodology is also presented. The usefulness of the test, metric, and post hoc analysis is demonstrated via a case study on the controversial case of COMPAS, an automated decision system employed in the US to assist judges with assessing recidivism risks. Overall, the methods and metrics provided here may assess automated decision systems' fairness as part of a more extensive accountability assessment, such as those based on the system accountability benchmark.
Causal reasoning and logical reasoning are two important types of reasoning abilities for human intelligence. However, their relationship has not been extensively explored under machine intelligence context. In this paper, we explore how the two reasoning abilities can be jointly modeled to enhance both accuracy and explainability of machine learning models. More specifically, by integrating two important types of reasoning ability -- counterfactual reasoning and (neural) logical reasoning -- we propose Counterfactual Collaborative Reasoning (CCR), which conducts counterfactual logic reasoning to improve the performance. In particular, we use recommender system as an example to show how CCR alleviate data scarcity, improve accuracy and enhance transparency. Technically, we leverage counterfactual reasoning to generate "difficult" counterfactual training examples for data augmentation, which -- together with the original training examples -- can enhance the model performance. Since the augmented data is model irrelevant, they can be used to enhance any model, enabling the wide applicability of the technique. Besides, most of the existing data augmentation methods focus on "implicit data augmentation" over users' implicit feedback, while our framework conducts "explicit data augmentation" over users explicit feedback based on counterfactual logic reasoning. Experiments on three real-world datasets show that CCR achieves better performance than non-augmented models and implicitly augmented models, and also improves model transparency by generating counterfactual explanations.
Structural data well exists in Web applications, such as social networks in social media, citation networks in academic websites, and threads data in online forums. Due to the complex topology, it is difficult to process and make use of the rich information within such data. Graph Neural Networks (GNNs) have shown great advantages on learning representations for structural data. However, the non-transparency of the deep learning models makes it non-trivial to explain and interpret the predictions made by GNNs. Meanwhile, it is also a big challenge to evaluate the GNN explanations, since in many cases, the ground-truth explanations are unavailable. In this paper, we take insights of Counterfactual and Factual (CF^2) reasoning from causal inference theory, to solve both the learning and evaluation problems in explainable GNNs. For generating explanations, we propose a model-agnostic framework by formulating an optimization problem based on both of the two casual perspectives. This distinguishes CF^2 from previous explainable GNNs that only consider one of them. Another contribution of the work is the evaluation of GNN explanations. For quantitatively evaluating the generated explanations without the requirement of ground-truth, we design metrics based on Counterfactual and Factual reasoning to evaluate the necessity and sufficiency of the explanations. Experiments show that no matter ground-truth explanations are available or not, CF^2 generates better explanations than previous state-of-the-art methods on real-world datasets. Moreover, the statistic analysis justifies the correlation between the performance on ground-truth evaluation and our proposed metrics.
We describe ACE0, a lightweight platform for evaluating the suitability and viability of AI methods for behaviour discovery in multiagent simulations. Specifically, ACE0 was designed to explore AI methods for multi-agent simulations used in operations research studies related to new technologies such as autonomous aircraft. Simulation environments used in production are often high-fidelity, complex, require significant domain knowledge and as a result have high R&D costs. Minimal and lightweight simulation environments can help researchers and engineers evaluate the viability of new AI technologies for behaviour discovery in a more agile and potentially cost effective manner. In this paper we describe the motivation for the development of ACE0.We provide a technical overview of the system architecture, describe a case study of behaviour discovery in the aerospace domain, and provide a qualitative evaluation of the system. The evaluation includes a brief description of collaborative research projects with academic partners, exploring different AI behaviour discovery methods.
Machine learning plays a role in many deployed decision systems, often in ways that are difficult or impossible to understand by human stakeholders. Explaining, in a human-understandable way, the relationship between the input and output of machine learning models is essential to the development of trustworthy machine-learning-based systems. A burgeoning body of research seeks to define the goals and methods of explainability in machine learning. In this paper, we seek to review and categorize research on counterfactual explanations, a specific class of explanation that provides a link between what could have happened had input to a model been changed in a particular way. Modern approaches to counterfactual explainability in machine learning draw connections to the established legal doctrine in many countries, making them appealing to fielded systems in high-impact areas such as finance and healthcare. Thus, we design a rubric with desirable properties of counterfactual explanation algorithms and comprehensively evaluate all currently-proposed algorithms against that rubric. Our rubric provides easy comparison and comprehension of the advantages and disadvantages of different approaches and serves as an introduction to major research themes in this field. We also identify gaps and discuss promising research directions in the space of counterfactual explainability.
Recommender systems play a crucial role in mitigating the problem of information overload by suggesting users' personalized items or services. The vast majority of traditional recommender systems consider the recommendation procedure as a static process and make recommendations following a fixed strategy. In this paper, we propose a novel recommender system with the capability of continuously improving its strategies during the interactions with users. We model the sequential interactions between users and a recommender system as a Markov Decision Process (MDP) and leverage Reinforcement Learning (RL) to automatically learn the optimal strategies via recommending trial-and-error items and receiving reinforcements of these items from users' feedbacks. In particular, we introduce an online user-agent interacting environment simulator, which can pre-train and evaluate model parameters offline before applying the model online. Moreover, we validate the importance of list-wise recommendations during the interactions between users and agent, and develop a novel approach to incorporate them into the proposed framework LIRD for list-wide recommendations. The experimental results based on a real-world e-commerce dataset demonstrate the effectiveness of the proposed framework.