亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

The empirical measure resulting from the nearest neighbors to a given point - \textit{the nearest neighbor measure} - is introduced and studied as a central statistical quantity. First, the associated empirical process is shown to satisfy a uniform central limit theorem under a (local) bracketing entropy condition on the underlying class of functions (reflecting the localizing nature of the nearest neighbor algorithm). Second a uniform non-asymptotic bound is established under a well-known condition, often referred to as Vapnik-Chervonenkis, on the uniform entropy numbers. The covariance of the Gaussian limit obtained in the uniform central limit theorem is equal to the conditional covariance operator (given the point of interest). This suggests the possibility of extending standard approaches - non local - replacing simply the standard empirical measure by the nearest neighbor measure while using the same way of making inference but with the nearest neighbors only instead of the full data.

相關內容

An important strategy for identifying principal causal effects, which are often used in settings with noncompliance, is to invoke the principal ignorability (PI) assumption. As PI is untestable, it is important to gauge how sensitive effect estimates are to its violation. We focus on this task for the common one-sided noncompliance setting where there are two principal strata, compliers and noncompliers. Under PI, compliers and noncompliers share the same outcome-mean-given-covariates function under the control condition. For sensitivity analysis, we allow this function to differ between compliers and noncompliers in several ways, indexed by an odds ratio, a generalized odds ratio, a mean ratio, or a standardized mean difference sensitivity parameter. We tailor sensitivity analysis techniques (with any sensitivity parameter choice) to several types of PI-based main analysis methods, including outcome regression, influence function-based and weighting methods. We illustrate the proposed sensitivity analyses using several outcome types from the JOBS II study, and provide code in the R-package PIsens.

For certain materials science scenarios arising in rubber technology, one-dimensional moving boundary problems (MBPs) with kinetic boundary conditions are capable of unveiling the large-time behavior of the diffusants penetration front, giving a direct estimate on the service life of the material. In this paper, we propose a random walk algorithm able to lead to good numerical approximations of both the concentration profile and the location of the sharp front. Essentially, the proposed scheme decouples the target evolution system in two steps: (i) the ordinary differential equation corresponding to the evaluation of the speed of the moving boundary is solved via an explicit Euler method, and (ii) the associated diffusion problem is solved by a random walk method. To verify the correctness of our random walk algorithm we compare the resulting approximations to results based on a finite element approach with a controlled convergence rate. Our numerical experiments recover well penetration depth measurements of an experimental setup targeting dense rubbers.

Discrepancy theory provides powerful tools for producing higher-quality objects which "beat the union bound" in fundamental settings throughout combinatorics and computer science. However, this quality has often come at the price of more expensive algorithms. We introduce a new framework for bridging this gap, by allowing for the efficient implementation of discrepancy-theoretic primitives. Our framework repeatedly solves regularized optimization problems to low accuracy to approximate the partial coloring method of [Rot17], and simplifies and generalizes recent work of [JSS23] on fast algorithms for Spencer's theorem. In particular, our framework only requires that the discrepancy body of interest has exponentially large Gaussian measure and is expressible as a sublevel set of a symmetric, convex function. We combine this framework with new tools for proving Gaussian measure lower bounds to give improved algorithms for a variety of sparsification and coloring problems. As a first application, we use our framework to obtain an $\widetilde{O}(m \cdot \epsilon^{-3.5})$ time algorithm for constructing an $\epsilon$-approximate spectral sparsifier of an $m$-edge graph, matching the sparsity of [BSS14] up to constant factors and improving upon the $\widetilde{O}(m \cdot \epsilon^{-6.5})$ runtime of [LeeS17]. We further give a state-of-the-art algorithm for constructing graph ultrasparsifiers and an almost-linear time algorithm for constructing linear-sized degree-preserving sparsifiers via discrepancy theory; in the latter case, such sparsifiers were not known to exist previously. We generalize these results to their analogs in sparsifying isotropic sums of positive semidefinite matrices. Finally, to demonstrate the versatility of our technique, we obtain a nearly-input-sparsity time constructive algorithm for Spencer's theorem (where we recover a recent result of [JSS23]).

We propose a self-stabilizing leader election (SS-LE) protocol on ring networks in the population protocol model. Given a rough knowledge $\psi = \lceil \log n \rceil + O(1)$ on the population size $n$, the proposed protocol lets the population reach a safe configuration within $O(n^2 \log n)$ steps with high probability starting from any configuration. Thereafter, the population keeps the unique leader forever. Since no protocol solves SS-LE in $o(n^2)$ steps with high probability, the convergence time is near-optimal: the gap is only an $O(\log n)$ multiplicative factor. This protocol uses only $polylog(n)$ states. There exist two state-of-the-art algorithms in current literature that solve SS-LE on ring networks. The first algorithm uses a polynomial number of states and solves SS-LE in $O(n^2)$ steps, whereas the second algorithm requires exponential time but it uses only a constant number of states. Our proposed algorithm provides an excellent middle ground between these two.

Generative Adversarial Networks (GANs) are a popular formulation to train generative models for complex high dimensional data. The standard method for training GANs involves a gradient descent-ascent (GDA) procedure on a minimax optimization problem. This procedure is hard to analyze in general due to the nonlinear nature of the dynamics. We study the local dynamics of GDA for training a GAN with a kernel-based discriminator. This convergence analysis is based on a linearization of a non-linear dynamical system that describes the GDA iterations, under an \textit{isolated points model} assumption from [Becker et al. 2022]. Our analysis brings out the effect of the learning rates, regularization, and the bandwidth of the kernel discriminator, on the local convergence rate of GDA. Importantly, we show phase transitions that indicate when the system converges, oscillates, or diverges. We also provide numerical simulations that verify our claims.

Even when the causal graph underlying our data is unknown, we can use observational data to narrow down the possible values that an average treatment effect (ATE) can take by (1) identifying the graph up to a Markov equivalence class; and (2) estimating that ATE for each graph in the class. While the PC algorithm can identify this class under strong faithfulness assumptions, it can be computationally prohibitive. Fortunately, only the local graph structure around the treatment is required to identify the set of possible ATE values, a fact exploited by local discovery algorithms to improve computational efficiency. In this paper, we introduce Local Discovery using Eager Collider Checks (LDECC), a new local causal discovery algorithm that leverages unshielded colliders to orient the treatment's parents differently from existing methods. We show that there exist graphs where LDECC exponentially outperforms existing local discovery algorithms and vice versa. Moreover, we show that LDECC and existing algorithms rely on different faithfulness assumptions, leveraging this insight to weaken the assumptions for identifying the set of possible ATE values.

We demonstrate the relevance of an algorithm called generalized iterative scaling (GIS) or simultaneous multiplicative algebraic reconstruction technique (SMART) and its rescaled block-iterative version (RBI-SMART) in the field of optimal transport (OT). Many OT problems can be tackled through the use of entropic regularization by solving the Schr\"odinger problem, which is an information projection problem, that is, with respect to the Kullback--Leibler divergence. Here we consider problems that have several affine constraints. It is well-known that cyclic information projections onto the individual affine sets converge to the solution. In practice, however, even these individual projections are not explicitly available in general. In this paper, we exchange them for one GIS iteration. If this is done for every affine set, we obtain RBI-SMART. We provide a convergence proof using an interpretation of these iterations as two-step affine projections in an equivalent problem. This is done in a slightly more general setting than RBI-SMART, since we use a mix of explicitly known information projections and GIS iterations. We proceed to specialize this algorithm to several OT applications. First, we find the measure that minimizes the regularized OT divergence to a given measure under moment constraints. Second and third, the proposed framework yields an algorithm for solving a regularized martingale OT problem, as well as a relaxed version of the barycentric weak OT problem. Finally, we show an approach from the literature for unbalanced OT problems.

The deep generative model yields an implicit estimator for the unknown distribution or density function of the observation. This paper investigates some statistical properties of the implicit density estimator pursued by VAE-type methods from a nonparametric density estimation framework. More specifically, we obtain convergence rates of the VAE-type density estimator under the assumption that the underlying true density function belongs to a locally H\"{o}lder class. Remarkably, a near minimax optimal rate with respect to the Hellinger metric can be achieved by the simplest network architecture, a shallow generative model with a one-dimensional latent variable. The proof of the main theorem relies on the well-known result from the nonparametric Bayesian literature that a smooth density with a suitably decaying tail can efficiently be approximated by a finite mixture of normal distributions. We also discuss an alternative proof, which offers important insights and suggests a potential extension to structured density estimation.

For simulations of time-evolution problems, such as weather and climate models, taking the largest stable time-step is advantageous for reducing the wall-clock time. We propose methods for studying the effect of linear dispersive errors on the time-stepping accuracy of nonlinear problems. We demonstrate an application of this to the Rotating Shallow Water Equations (RSWEs). To begin, a nonlinear time-stepping `triadic error' metric is constructed from three-wave interactions. Stability polynomials, obtained from the oscillatory Dahlquist test equation, enable the computation of triadic errors for different time-steppers; we compare five classical schemes. We next provide test cases comparing different time-step sizes within a numerical model. The first case is of a reforming Gaussian height perturbation. This contains a nonlinear phase shift that can be missed with a large time-step. The second set of test cases initialise individual waves to allow specific triads to form. The presence of a slow transition from linear to nonlinear dynamics creates a good venue for testing how the slow phase information is replicated with a large time-step. Three models, including the finite element code Gusto, and the MetOffice's new LFRic model, are examined in these test cases with different time-steppers.

In this work, we propose and compare three numerical methods to handle the one-phase Hele-Shaw problem with surface tension in dimension two by using three variational approaches in the spirit of the seminal works \cite{Otto, Gia_Otto}.

北京阿比特科技有限公司