The big crux with drug delivery to human lungs is that the delivered dose at the local site of action is unpredictable and very difficult to measure, even a posteriori. It is highly subject-specific as it depends on lung morphology, disease, breathing, and aerosol characteristics. Given these challenges, computational approaches have shown potential, but have so far failed due to fundamental methodical limitations. We present and validate a novel in silico model that enables the subject-specific prediction of local aerosol deposition throughout the entire lung. Its unprecedented spatiotemporal resolution allows to track each aerosol particle anytime during the breathing cycle, anywhere in the complete system of conducting airways and the alveolar region. Predictions are shown to be in excellent agreement with in vivo SPECT/CT data for a healthy human cohort. We further showcase the model's capabilities to represent strong heterogeneities in diseased lungs by studying an IPF patient. Finally, high computational efficiency and automated model generation and calibration ensure readiness to be applied at scale. We envision our method not only to improve inhalation therapies by informing and accelerating all stages of (pre-)clinical drug and device development, but also as a more-than-equivalent alternative to nuclear imaging of the lungs.
We present a framework for approximate Bayesian inference when only a limited number of noisy log-likelihood evaluations can be obtained due to computational constraints, which is becoming increasingly common for applications of complex models. We model the log-likelihood function using a Gaussian process (GP) and the main methodological innovation is to apply this model to emulate the progression that an exact Metropolis-Hastings (MH) sampler would take if it was applicable. Informative log-likelihood evaluation locations are selected using a sequential experimental design strategy until the MH accept/reject decision is done accurately enough according to the GP model. The resulting approximate sampler is conceptually simple and sample-efficient. It is also more robust to violations of GP modelling assumptions compared with earlier, related "Bayesian optimisation-like" methods tailored for Bayesian inference. We discuss some theoretical aspects and various interpretations of the resulting approximate MH sampler, and demonstrate its benefits in the context of Bayesian and generalised Bayesian likelihood-free inference for simulator-based statistical models.
We describe an algorithm that allows one to find dense packing configurations of a number of congruent disks in arbitrary domains in two or more dimensions. We have applied it to a large class of two dimensional domains such as rectangles, ellipses, crosses, multiply connected domains and even to the cardioid. For many of the cases that we have studied no previous result was available. The fundamental idea in our approach is the introduction of "image" disks, which allows one to work with a fixed container, thus lifting the limitations of the packing algorithms of \cite{Nurmela97,Amore21,Amore23}. We believe that the extension of our algorithm to three (or higher) dimensional containers (not considered here) can be done straightforwardly.
Gaussian elimination (GE) is the most used dense linear solver. Error analysis of GE with selected pivoting strategies on well-conditioned systems can focus on studying the behavior of growth factors. Although exponential growth is possible with GE with partial pivoting (GEPP), growth tends to stay much smaller in practice. Support for this behavior was provided last year by Huang and Tikhomirov's average-case analysis of GEPP, which showed GEPP growth factors stay at most polynomial with very high probability when using small Gaussian perturbations. GE with complete pivoting (GECP) has also seen a lot of recent interest, with recent improvements to lower bounds on worst-case GECP growth provided by Edelman and Urschel earlier this year. We are interested in studying how GEPP and GECP behave on the same linear systems as well as studying large growth on particular subclasses of matrices, including orthogonal matrices. We will also study systems when GECP leads to larger growth than GEPP, which will lead to new empirical lower bounds on how much worse GECP can behave compared to GEPP in terms of growth. We also present an empirical study on a family of exponential GEPP growth matrices whose polynomial behavior in small neighborhoods limits to the initial GECP growth factor.
Concentrations of pathogen genomes measured in wastewater have recently become available as a new data source to use when modeling the spread of infectious diseases. One promising use for this data source is inference of the effective reproduction number, the average number of individuals a newly infected person will infect. We propose a model where new infections arrive according to a time-varying immigration rate which can be interpreted as a compound parameter equal to the product of the proportion of susceptibles in the population and the transmission rate. This model allows us to estimate the effective reproduction number from concentrations of pathogen genomes while avoiding difficult to verify assumptions about the dynamics of the susceptible population. As a byproduct of our primary goal, we also produce a new model for estimating the effective reproduction number from case data using the same framework. We test this modeling framework in an agent-based simulation study with a realistic data generating mechanism which accounts for the time-varying dynamics of pathogen shedding. Finally, we apply our new model to estimating the effective reproduction number of SARS-CoV-2 in Los Angeles, California, using pathogen RNA concentrations collected from a large wastewater treatment facility.
Difference in proportions is frequently used to measure treatment effect for binary outcomes in randomized clinical trials. The estimation of difference in proportions can be assisted by adjusting for prognostic baseline covariates to enhance precision and bolster statistical power. Standardization or G-computation is a widely used method for covariate adjustment in estimating unconditional difference in proportions, because of its robustness to model misspecification. Various inference methods have been proposed to quantify the uncertainty and confidence intervals based on large-sample theories. However, their performances under small sample sizes and model misspecification have not been comprehensively evaluated. We propose an alternative approach to estimate the unconditional variance of the standardization estimator based on the robust sandwich estimator to further enhance the finite sample performance. Extensive simulations are provided to demonstrate the performances of the proposed method, spanning a wide range of sample sizes, randomization ratios, and model misspecification. We apply the proposed method in a real data example to illustrate the practical utility.
Touchscreens equipped with friction modulation can provide rich tactile feedback to their users. To date, there are no standard metrics to properly quantify the benefit brought by haptic feedback.The definition of such metrics is not straightforward since friction modulation technologies can be achieved by either ultrasonic waves or with electroadhesion. In addition, the output depends strongly on the user, both because of the mechanical behavior of the fingertip and personal tactile somatosensory capabilities. This paper proposes a method to evaluate and compare the performance of haptic tablets on an objective scale. The method first defines multiple metrics using physical measurements of friction and latency. The comparison is completed with metrics derived from information theory and based on pointing tasks performed by users. We evaluated the comparison method with two haptic devices, one based on ultrasonic friction modulation and the other based on electroadhesion. This work paves the way toward the definitions of standard specifications for haptic tablets, to establish benchmarks and guidelines for improving surface haptic devices.
While deep learning techniques have provided the state-of-the-art performance in various clinical tasks, explainability regarding their decision-making process can greatly enhance the credence of these methods for safer and quicker clinical adoption. With high flexibility, Gradient-weighted Class Activation Mapping (Grad-CAM) has been widely adopted to offer intuitive visual interpretation of various deep learning models' reasoning processes in computer-assisted diagnosis. However, despite the popularity of the technique, there is still a lack of systematic study on Grad-CAM's performance on different deep learning architectures. In this study, we investigate its robustness and effectiveness across different popular deep learning models, with a focus on the impact of the networks' depths and architecture types, by using a case study of automatic pneumothorax diagnosis in X-ray scans. Our results show that deeper neural networks do not necessarily contribute to a strong improvement of pneumothorax diagnosis accuracy, and the effectiveness of GradCAM also varies among different network architectures.
In epidemiology and social sciences, propensity score methods are popular for estimating treatment effects using observational data, and multiple imputation is popular for handling covariate missingness. However, how to appropriately use multiple imputation for propensity score analysis is not completely clear. This paper aims to bring clarity on the consistency (or lack thereof) of methods that have been proposed, focusing on the within approach (where the effect is estimated separately in each imputed dataset and then the multiple estimates are combined) and the across approach (where typically propensity scores are averaged across imputed datasets before being used for effect estimation). We show that the within method is valid and can be used with any causal effect estimator that is consistent in the full-data setting. Existing across methods are inconsistent, but a different across method that averages the inverse probability weights across imputed datasets is consistent for propensity score weighting. We also comment on methods that rely on imputing a function of the missing covariate rather than the covariate itself, including imputation of the propensity score and of the probability weight. Based on consistency results and practical flexibility, we recommend generally using the standard within method. Throughout, we provide intuition to make the results meaningful to the broad audience of applied researchers.
We hypothesize that due to the greedy nature of learning in multi-modal deep neural networks, these models tend to rely on just one modality while under-fitting the other modalities. Such behavior is counter-intuitive and hurts the models' generalization, as we observe empirically. To estimate the model's dependence on each modality, we compute the gain on the accuracy when the model has access to it in addition to another modality. We refer to this gain as the conditional utilization rate. In the experiments, we consistently observe an imbalance in conditional utilization rates between modalities, across multiple tasks and architectures. Since conditional utilization rate cannot be computed efficiently during training, we introduce a proxy for it based on the pace at which the model learns from each modality, which we refer to as the conditional learning speed. We propose an algorithm to balance the conditional learning speeds between modalities during training and demonstrate that it indeed addresses the issue of greedy learning. The proposed algorithm improves the model's generalization on three datasets: Colored MNIST, Princeton ModelNet40, and NVIDIA Dynamic Hand Gesture.
Breast cancer remains a global challenge, causing over 1 million deaths globally in 2018. To achieve earlier breast cancer detection, screening x-ray mammography is recommended by health organizations worldwide and has been estimated to decrease breast cancer mortality by 20-40%. Nevertheless, significant false positive and false negative rates, as well as high interpretation costs, leave opportunities for improving quality and access. To address these limitations, there has been much recent interest in applying deep learning to mammography; however, obtaining large amounts of annotated data poses a challenge for training deep learning models for this purpose, as does ensuring generalization beyond the populations represented in the training dataset. Here, we present an annotation-efficient deep learning approach that 1) achieves state-of-the-art performance in mammogram classification, 2) successfully extends to digital breast tomosynthesis (DBT; "3D mammography"), 3) detects cancers in clinically-negative prior mammograms of cancer patients, 4) generalizes well to a population with low screening rates, and 5) outperforms five-out-of-five full-time breast imaging specialists by improving absolute sensitivity by an average of 14%. Our results demonstrate promise towards software that can improve the accuracy of and access to screening mammography worldwide.