In many imaging modalities, objects of interest can occur in a variety of locations and poses (i.e. are subject to translations and rotations in 2d or 3d), but the location and pose of an object does not change its semantics (i.e. the object's essence). That is, the specific location and rotation of an airplane in satellite imagery, or the 3d rotation of a chair in a natural image, or the rotation of a particle in a cryo-electron micrograph, do not change the intrinsic nature of those objects. Here, we consider the problem of learning semantic representations of objects that are invariant to pose and location in a fully unsupervised manner. We address shortcomings in previous approaches to this problem by introducing TARGET-VAE, a translation and rotation group-equivariant variational autoencoder framework. TARGET-VAE combines three core innovations: 1) a rotation and translation group-equivariant encoder architecture, 2) a structurally disentangled distribution over latent rotation, translation, and a rotation-translation-invariant semantic object representation, which are jointly inferred by the approximate inference network, and 3) a spatially equivariant generator network. In comprehensive experiments, we show that TARGET-VAE learns disentangled representations without supervision that significantly improve upon, and avoid the pathologies of, previous methods. When trained on images highly corrupted by rotation and translation, the semantic representations learned by TARGET-VAE are similar to those learned on consistently posed objects, dramatically improving clustering in the semantic latent space. Furthermore, TARGET-VAE is able to perform remarkably accurate unsupervised pose and location inference. We expect methods like TARGET-VAE will underpin future approaches for unsupervised object generation, pose prediction, and object detection.
Given a piece of text, a video clip and a reference audio, the movie dubbing (also known as visual voice clone V2C) task aims to generate speeches that match the speaker's emotion presented in the video using the desired speaker voice as reference. V2C is more challenging than conventional text-to-speech tasks as it additionally requires the generated speech to exactly match the varying emotions and speaking speed presented in the video. Unlike previous works, we propose a novel movie dubbing architecture to tackle these problems via hierarchical prosody modelling, which bridges the visual information to corresponding speech prosody from three aspects: lip, face, and scene. Specifically, we align lip movement to the speech duration, and convey facial expression to speech energy and pitch via attention mechanism based on valence and arousal representations inspired by recent psychology findings. Moreover, we design an emotion booster to capture the atmosphere from global video scenes. All these embeddings together are used to generate mel-spectrogram and then convert to speech waves via existing vocoder. Extensive experimental results on the Chem and V2C benchmark datasets demonstrate the favorable performance of the proposed method. The source code and trained models will be released to the public.
Human civilization has an increasingly powerful influence on the earth system. Affected by climate change and land-use change, natural disasters such as flooding have been increasing in recent years. Earth observations are an invaluable source for assessing and mitigating negative impacts. Detecting changes from Earth observation data is one way to monitor the possible impact. Effective and reliable Change Detection (CD) methods can help in identifying the risk of disaster events at an early stage. In this work, we propose a novel unsupervised CD method on time series Synthetic Aperture Radar~(SAR) data. Our proposed method is a probabilistic model trained with unsupervised learning techniques, reconstruction, and contrastive learning. The change map is generated with the help of the distribution difference between pre-incident and post-incident data. Our proposed CD model is evaluated on flood detection data. We verified the efficacy of our model on 8 different flood sites, including three recent flood events from Copernicus Emergency Management Services and six from the Sen1Floods11 dataset. Our proposed model achieved an average of 64.53\% Intersection Over Union(IoU) value and 75.43\% F1 score. Our achieved IoU score is approximately 6-27\% and F1 score is approximately 7-22\% better than the compared unsupervised and supervised existing CD methods. The results and extensive discussion presented in the study show the effectiveness of the proposed unsupervised CD method.
Recent aerial object detection models rely on a large amount of labeled training data, which requires unaffordable manual labeling costs in large aerial scenes with dense objects. Active learning is effective in reducing the data labeling cost by selectively querying the informative and representative unlabelled samples. However, existing active learning methods are mainly with class-balanced setting and image-based querying for generic object detection tasks, which are less applicable to aerial object detection scenario due to the long-tailed class distribution and dense small objects in aerial scenes. In this paper, we propose a novel active learning method for cost-effective aerial object detection. Specifically, both object-level and image-level informativeness are considered in the object selection to refrain from redundant and myopic querying. Besides, an easy-to-use class-balancing criterion is incorporated to favor the minority objects to alleviate the long-tailed class distribution problem in model training. To fully utilize the queried information, we further devise a training loss to mine the latent knowledge in the undiscovered image regions. Extensive experiments are conducted on the DOTA-v1.0 and DOTA-v2.0 benchmarks to validate the effectiveness of the proposed method. The results show that it can save more than 75% of the labeling cost to reach the same performance compared to the baselines and state-of-the-art active object detection methods. Code is available at //github.com/ZJW700/MUS-CDB
Link prediction on knowledge graphs (KGs) is a key research topic. Previous work mainly focused on binary relations, paying less attention to higher-arity relations although they are ubiquitous in real-world KGs. This paper considers link prediction upon n-ary relational facts and proposes a graph-based approach to this task. The key to our approach is to represent the n-ary structure of a fact as a small heterogeneous graph, and model this graph with edge-biased fully-connected attention. The fully-connected attention captures universal inter-vertex interactions, while with edge-aware attentive biases to particularly encode the graph structure and its heterogeneity. In this fashion, our approach fully models global and local dependencies in each n-ary fact, and hence can more effectively capture associations therein. Extensive evaluation verifies the effectiveness and superiority of our approach. It performs substantially and consistently better than current state-of-the-art across a variety of n-ary relational benchmarks. Our code is publicly available.
Sequential recommendation as an emerging topic has attracted increasing attention due to its important practical significance. Models based on deep learning and attention mechanism have achieved good performance in sequential recommendation. Recently, the generative models based on Variational Autoencoder (VAE) have shown the unique advantage in collaborative filtering. In particular, the sequential VAE model as a recurrent version of VAE can effectively capture temporal dependencies among items in user sequence and perform sequential recommendation. However, VAE-based models suffer from a common limitation that the representational ability of the obtained approximate posterior distribution is limited, resulting in lower quality of generated samples. This is especially true for generating sequences. To solve the above problem, in this work, we propose a novel method called Adversarial and Contrastive Variational Autoencoder (ACVAE) for sequential recommendation. Specifically, we first introduce the adversarial training for sequence generation under the Adversarial Variational Bayes (AVB) framework, which enables our model to generate high-quality latent variables. Then, we employ the contrastive loss. The latent variables will be able to learn more personalized and salient characteristics by minimizing the contrastive loss. Besides, when encoding the sequence, we apply a recurrent and convolutional structure to capture global and local relationships in the sequence. Finally, we conduct extensive experiments on four real-world datasets. The experimental results show that our proposed ACVAE model outperforms other state-of-the-art methods.
Self-supervised learning has been widely used to obtain transferrable representations from unlabeled images. Especially, recent contrastive learning methods have shown impressive performances on downstream image classification tasks. While these contrastive methods mainly focus on generating invariant global representations at the image-level under semantic-preserving transformations, they are prone to overlook spatial consistency of local representations and therefore have a limitation in pretraining for localization tasks such as object detection and instance segmentation. Moreover, aggressively cropped views used in existing contrastive methods can minimize representation distances between the semantically different regions of a single image. In this paper, we propose a spatially consistent representation learning algorithm (SCRL) for multi-object and location-specific tasks. In particular, we devise a novel self-supervised objective that tries to produce coherent spatial representations of a randomly cropped local region according to geometric translations and zooming operations. On various downstream localization tasks with benchmark datasets, the proposed SCRL shows significant performance improvements over the image-level supervised pretraining as well as the state-of-the-art self-supervised learning methods.
Modeling multivariate time series has long been a subject that has attracted researchers from a diverse range of fields including economics, finance, and traffic. A basic assumption behind multivariate time series forecasting is that its variables depend on one another but, upon looking closely, it is fair to say that existing methods fail to fully exploit latent spatial dependencies between pairs of variables. In recent years, meanwhile, graph neural networks (GNNs) have shown high capability in handling relational dependencies. GNNs require well-defined graph structures for information propagation which means they cannot be applied directly for multivariate time series where the dependencies are not known in advance. In this paper, we propose a general graph neural network framework designed specifically for multivariate time series data. Our approach automatically extracts the uni-directed relations among variables through a graph learning module, into which external knowledge like variable attributes can be easily integrated. A novel mix-hop propagation layer and a dilated inception layer are further proposed to capture the spatial and temporal dependencies within the time series. The graph learning, graph convolution, and temporal convolution modules are jointly learned in an end-to-end framework. Experimental results show that our proposed model outperforms the state-of-the-art baseline methods on 3 of 4 benchmark datasets and achieves on-par performance with other approaches on two traffic datasets which provide extra structural information.
For better user experience and business effectiveness, Click-Through Rate (CTR) prediction has been one of the most important tasks in E-commerce. Although extensive CTR prediction models have been proposed, learning good representation of items from multimodal features is still less investigated, considering an item in E-commerce usually contains multiple heterogeneous modalities. Previous works either concatenate the multiple modality features, that is equivalent to giving a fixed importance weight to each modality; or learn dynamic weights of different modalities for different items through technique like attention mechanism. However, a problem is that there usually exists common redundant information across multiple modalities. The dynamic weights of different modalities computed by using the redundant information may not correctly reflect the different importance of each modality. To address this, we explore the complementarity and redundancy of modalities by considering modality-specific and modality-invariant features differently. We propose a novel Multimodal Adversarial Representation Network (MARN) for the CTR prediction task. A multimodal attention network first calculates the weights of multiple modalities for each item according to its modality-specific features. Then a multimodal adversarial network learns modality-invariant representations where a double-discriminators strategy is introduced. Finally, we achieve the multimodal item representations by combining both modality-specific and modality-invariant representations. We conduct extensive experiments on both public and industrial datasets, and the proposed method consistently achieves remarkable improvements to the state-of-the-art methods. Moreover, the approach has been deployed in an operational E-commerce system and online A/B testing further demonstrates the effectiveness.
The prevalence of networked sensors and actuators in many real-world systems such as smart buildings, factories, power plants, and data centers generate substantial amounts of multivariate time series data for these systems. The rich sensor data can be continuously monitored for intrusion events through anomaly detection. However, conventional threshold-based anomaly detection methods are inadequate due to the dynamic complexities of these systems, while supervised machine learning methods are unable to exploit the large amounts of data due to the lack of labeled data. On the other hand, current unsupervised machine learning approaches have not fully exploited the spatial-temporal correlation and other dependencies amongst the multiple variables (sensors/actuators) in the system for detecting anomalies. In this work, we propose an unsupervised multivariate anomaly detection method based on Generative Adversarial Networks (GANs). Instead of treating each data stream independently, our proposed MAD-GAN framework considers the entire variable set concurrently to capture the latent interactions amongst the variables. We also fully exploit both the generator and discriminator produced by the GAN, using a novel anomaly score called DR-score to detect anomalies by discrimination and reconstruction. We have tested our proposed MAD-GAN using two recent datasets collected from real-world CPS: the Secure Water Treatment (SWaT) and the Water Distribution (WADI) datasets. Our experimental results showed that the proposed MAD-GAN is effective in reporting anomalies caused by various cyber-intrusions compared in these complex real-world systems.
Image-to-image translation aims to learn the mapping between two visual domains. There are two main challenges for many applications: 1) the lack of aligned training pairs and 2) multiple possible outputs from a single input image. In this work, we present an approach based on disentangled representation for producing diverse outputs without paired training images. To achieve diversity, we propose to embed images onto two spaces: a domain-invariant content space capturing shared information across domains and a domain-specific attribute space. Our model takes the encoded content features extracted from a given input and the attribute vectors sampled from the attribute space to produce diverse outputs at test time. To handle unpaired training data, we introduce a novel cross-cycle consistency loss based on disentangled representations. Qualitative results show that our model can generate diverse and realistic images on a wide range of tasks without paired training data. For quantitative comparisons, we measure realism with user study and diversity with a perceptual distance metric. We apply the proposed model to domain adaptation and show competitive performance when compared to the state-of-the-art on the MNIST-M and the LineMod datasets.