Decision making or scientific discovery pipelines such as job hiring and drug discovery often involve multiple stages: before any resource-intensive step, there is often an initial screening that uses predictions from a machine learning model to shortlist a few candidates from a large pool. We study screening procedures that aim to select candidates whose unobserved outcomes exceed user-specified values. We develop a method that wraps around any prediction model to produce a subset of candidates while controlling the proportion of falsely selected units. Building upon the conformal inference framework, our method first constructs p-values that quantify the statistical evidence for large outcomes; it then determines the shortlist by comparing the p-values to a threshold introduced in the multiple testing literature. In many cases, the procedure selects candidates whose predictions are above a data-dependent threshold. Our theoretical guarantee holds under mild exchangeability conditions on the samples, generalizing existing results on multiple conformal p-values. We demonstrate the empirical performance of our method via simulations, and apply it to job hiring and drug discovery datasets.
The projection predictive variable selection is a decision-theoretically justified Bayesian variable selection approach achieving an outstanding trade-off between predictive performance and sparsity. Its projection problem is not easy to solve in general because it is based on the Kullback-Leibler divergence from a restricted posterior predictive distribution of the so-called reference model to the parameter-conditional predictive distribution of a candidate model. Previous work showed how this projection problem can be solved for response families employed in generalized linear models and how an approximate latent-space approach can be used for many other response families. Here, we present an exact projection method for all response families with discrete and finite support, called the augmented-data projection. A simulation study for an ordinal response family shows that the proposed method performs better than or similarly to the previously proposed approximate latent-space projection. The cost of the slightly better performance of the augmented-data projection is a substantial increase in runtime. Thus, in such cases, we recommend the latent projection in the early phase of a model-building workflow and the augmented-data projection for final results. The ordinal response family from our simulation study is supported by both projection methods, but we also include a real-world cancer subtyping example with a nominal response family, a case that is not supported by the latent projection.
The identification of choice models is crucial for understanding consumer behavior, designing marketing policies, and developing new products. The identification of parametric choice-based demand models, such as the multinomial choice model (MNL), is typically straightforward. However, nonparametric models, which are highly effective and flexible in explaining customer choices, may encounter the curse of the dimensionality and lose their identifiability. For example, the ranking-based model, which is a nonparametric model and designed to mirror the random utility maximization (RUM) principle, is known to be nonidentifiable from the collection of choice probabilities alone. In this paper, we develop a new class of nonparametric models that is not subject to the problem of nonidentifiability. Our model assumes bounded rationality of consumers, which results in symmetric demand cannibalization and intriguingly enables full identification. That is to say, we can uniquely construct the model based on its observed choice probabilities over assortments. We further propose an efficient estimation framework using a combination of column generation and expectation-maximization algorithms. Using a real-world data, we show that our choice model demonstrates competitive prediction accuracy compared to the state-of-the-art benchmarks, despite incorporating the assumption of bounded rationality which could, in theory, limit the representation power of our model.
Identifying the direct causes or causal parents of a target variable is crucial for scientific discovery. Focusing on linear models, the invariant prediction framework was built upon the invariance principle, namely, the conditional distribution of the target variable given its causal parents is invariant across multiple environments or experimental conditions. However, their identifiability results for causal parents can be restrictive with respect to the underlying graph structure and the experimental conditions for generating interventional data. Motivated by a recent alternative formulation of invariance, called the invariant matching property, we establish identifiability results under relatively mild assumptions, which leads to a simple yet effective procedure for identifying causal parents. We demonstrate the performance of the proposed method over various synthetic and real datasets.
The process of annotating histological gigapixel-sized whole slide images (WSIs) at the pixel level for the purpose of training a supervised segmentation model is time-consuming. Region-based active learning (AL) involves training the model on a limited number of annotated image regions instead of requesting annotations of the entire images. These annotation regions are iteratively selected, with the goal of optimizing model performance while minimizing the annotated area. The standard method for region selection evaluates the informativeness of all square regions of a specified size and then selects a specific quantity of the most informative regions. We find that the efficiency of this method highly depends on the choice of AL step size (i.e., the combination of region size and the number of selected regions per WSI), and a suboptimal AL step size can result in redundant annotation requests or inflated computation costs. This paper introduces a novel technique for selecting annotation regions adaptively, mitigating the reliance on this AL hyperparameter. Specifically, we dynamically determine each region by first identifying an informative area and then detecting its optimal bounding box, as opposed to selecting regions of a uniform predefined shape and size as in the standard method. We evaluate our method using the task of breast cancer metastases segmentation on the public CAMELYON16 dataset and show that it consistently achieves higher sampling efficiency than the standard method across various AL step sizes. With only 2.6\% of tissue area annotated, we achieve full annotation performance and thereby substantially reduce the costs of annotating a WSI dataset. The source code is available at //github.com/DeepMicroscopy/AdaptiveRegionSelection.
Breaking safety constraints in control systems can lead to potential risks, resulting in unexpected costs or catastrophic damage. Nevertheless, uncertainty is ubiquitous, even among similar tasks. In this paper, we develop a novel adaptive safe control framework that integrates meta learning, Bayesian models, and control barrier function (CBF) method. Specifically, with the help of CBF method, we learn the inherent and external uncertainties by a unified adaptive Bayesian linear regression (ABLR) model, which consists of a forward neural network (NN) and a Bayesian output layer. Meta learning techniques are leveraged to pre-train the NN weights and priors of the ABLR model using data collected from historical similar tasks. For a new control task, we refine the meta-learned models using a few samples, and introduce pessimistic confidence bounds into CBF constraints to ensure safe control. Moreover, we provide theoretical criteria to guarantee probabilistic safety during the control processes. To validate our approach, we conduct comparative experiments in various obstacle avoidance scenarios. The results demonstrate that our algorithm significantly improves the Bayesian model-based CBF method, and is capable for efficient safe exploration even with multiple uncertain constraints.
Choice Modeling is at the core of many economics, operations, and marketing problems. In this paper, we propose a fundamental characterization of choice functions that encompasses a wide variety of extant choice models. We demonstrate how nonparametric estimators like neural nets can easily approximate such functionals and overcome the curse of dimensionality that is inherent in the non-parametric estimation of choice functions. We demonstrate through extensive simulations that our proposed functionals can flexibly capture underlying consumer behavior in a completely data-driven fashion and outperform traditional parametric models. As demand settings often exhibit endogenous features, we extend our framework to incorporate estimation under endogenous features. Further, we also describe a formal inference procedure to construct valid confidence intervals on objects of interest like price elasticity. Finally, to assess the practical applicability of our estimator, we utilize a real-world dataset from S. Berry, Levinsohn, and Pakes (1995). Our empirical analysis confirms that the estimator generates realistic and comparable own- and cross-price elasticities that are consistent with the observations reported in the existing literature.
In many industrial applications, obtaining labeled observations is not straightforward as it often requires the intervention of human experts or the use of expensive testing equipment. In these circumstances, active learning can be highly beneficial in suggesting the most informative data points to be used when fitting a model. Reducing the number of observations needed for model development alleviates both the computational burden required for training and the operational expenses related to labeling. Online active learning, in particular, is useful in high-volume production processes where the decision about the acquisition of the label for a data point needs to be taken within an extremely short time frame. However, despite the recent efforts to develop online active learning strategies, the behavior of these methods in the presence of outliers has not been thoroughly examined. In this work, we investigate the performance of online active linear regression in contaminated data streams. Our study shows that the currently available query strategies are prone to sample outliers, whose inclusion in the training set eventually degrades the predictive performance of the models. To address this issue, we propose a solution that bounds the search area of a conditional D-optimal algorithm and uses a robust estimator. Our approach strikes a balance between exploring unseen regions of the input space and protecting against outliers. Through numerical simulations, we show that the proposed method is effective in improving the performance of online active learning in the presence of outliers, thus expanding the potential applications of this powerful tool.
We study the properties of conformal prediction for network data under various sampling mechanisms that commonly arise in practice but often result in a non-representative sample of nodes. We interpret these sampling mechanisms as selection rules applied to a superpopulation and study the validity of conformal prediction conditional on an appropriate selection event. We show that the sampled subarray is exchangeable conditional on the selection event if the selection rule satisfies a permutation invariance property and a joint exchangeability condition holds for the superpopulation. Our result implies the finite-sample validity of conformal prediction for certain selection events related to ego networks and snowball sampling. We also show that when data are sampled via a random walk on a graph, a variant of weighted conformal prediction yields asymptotically valid prediction sets for an independently selected node from the population.
Unsupervised domain adaptation has recently emerged as an effective paradigm for generalizing deep neural networks to new target domains. However, there is still enormous potential to be tapped to reach the fully supervised performance. In this paper, we present a novel active learning strategy to assist knowledge transfer in the target domain, dubbed active domain adaptation. We start from an observation that energy-based models exhibit free energy biases when training (source) and test (target) data come from different distributions. Inspired by this inherent mechanism, we empirically reveal that a simple yet efficient energy-based sampling strategy sheds light on selecting the most valuable target samples than existing approaches requiring particular architectures or computation of the distances. Our algorithm, Energy-based Active Domain Adaptation (EADA), queries groups of targe data that incorporate both domain characteristic and instance uncertainty into every selection round. Meanwhile, by aligning the free energy of target data compact around the source domain via a regularization term, domain gap can be implicitly diminished. Through extensive experiments, we show that EADA surpasses state-of-the-art methods on well-known challenging benchmarks with substantial improvements, making it a useful option in the open world. Code is available at //github.com/BIT-DA/EADA.
With the rapid increase of large-scale, real-world datasets, it becomes critical to address the problem of long-tailed data distribution (i.e., a few classes account for most of the data, while most classes are under-represented). Existing solutions typically adopt class re-balancing strategies such as re-sampling and re-weighting based on the number of observations for each class. In this work, we argue that as the number of samples increases, the additional benefit of a newly added data point will diminish. We introduce a novel theoretical framework to measure data overlap by associating with each sample a small neighboring region rather than a single point. The effective number of samples is defined as the volume of samples and can be calculated by a simple formula $(1-\beta^{n})/(1-\beta)$, where $n$ is the number of samples and $\beta \in [0,1)$ is a hyperparameter. We design a re-weighting scheme that uses the effective number of samples for each class to re-balance the loss, thereby yielding a class-balanced loss. Comprehensive experiments are conducted on artificially induced long-tailed CIFAR datasets and large-scale datasets including ImageNet and iNaturalist. Our results show that when trained with the proposed class-balanced loss, the network is able to achieve significant performance gains on long-tailed datasets.