亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Online rating systems are often used in numerous web or mobile applications, e.g., Amazon and TripAdvisor, to assess the ground-truth quality of products. Due to herding effects, the aggregation of historical ratings (or historical collective opinion) can significantly influence subsequent ratings, leading to misleading and erroneous assessments. We study how to manage product ratings via rating aggregation rules and shortlisted representative reviews, for the purpose of correcting the assessment error. We first develop a mathematical model to characterize important factors of herding effects in product ratings. We then identify sufficient conditions (via the stochastic approximation theory), under which the historical collective opinion converges to the ground-truth collective opinion of the whole user population. These conditions identify a class of rating aggregation rules and review selection mechanisms that can reveal the ground-truth product quality. We also quantify the speed of convergence (via the martingale theory), which reflects the efficiency of rating aggregation rules and review selection mechanisms. We prove that the herding effects slow down the speed of convergence while an accurate review selection mechanism can speed it up. We also study the speed of convergence numerically and reveal trade-offs in selecting rating aggregation rules and review selection mechanisms. To show the utility of our framework, we design a maximum likelihood algorithm to infer model parameters from ratings, and conduct experiments on rating datasets from Amazon and TripAdvisor. We show that proper recency aware rating aggregation rules can improve the speed of convergence in Amazon and TripAdvisor by 41% and 62% respectively.

相關內容

亞(ya)馬(ma)遜(xun)公(gong)司(si)(Amazon,簡稱亞(ya)馬(ma)遜(xun);NASDAQ:AMZN),是美國最大(da)的一(yi)(yi)家網(wang)絡電(dian)子商務公(gong)司(si),位于華盛頓州(zhou)的西雅(ya)圖(tu)。是網(wang)絡上最早開始經營電(dian)子商務的公(gong)司(si)之一(yi)(yi),亞(ya)馬(ma)遜(xun)成立(li)于1995年,一(yi)(yi)開始只經營網(wang)絡的書(shu)籍(ji)銷售業(ye)務,現在(zai)則擴及了(le)(le)范圍相當(dang)廣(guang)的其(qi)他產品(pin)(pin),已(yi)成為(wei)全球(qiu)商品(pin)(pin)品(pin)(pin)種最多(duo)的網(wang)上零售商和全球(qiu)第二大(da)互聯網(wang)企業(ye),在(zai)公(gong)司(si)名(ming)下,也包括了(le)(le)AlexaInternet、a9、lab126、和互聯網(wang)電(dian)影(ying)數(shu)據(ju)庫(Internet Movie Database,IMDB)等子公(gong)司(si)。

Attacks against the Internet of Things (IoT) are rising as devices, applications, and interactions become more networked and integrated. The increase in cyber-attacks that target IoT networks poses a huge vulnerability and threat to the privacy, security, functionality, and availability of critical systems, which leads to operational disruptions, financial losses, identity thefts, and data breaches. To efficiently secure IoT devices, real-time detection of intrusion systems is critical, especially those using machine learning to identify threats and mitigate risks and vulnerabilities. This paper investigates the latest research on machine learning-based intrusion detection strategies for IoT security, concentrating on real-time responsiveness, detection accuracy, and algorithm efficiency. Key studies were reviewed from all well-known academic databases, and a taxonomy was provided for the existing approaches. This review also highlights existing research gaps and outlines the limitations of current IoT security frameworks to offer practical insights for future research directions and developments.

With the increasing adoption of metal additive manufacturing (AM), researchers and practitioners are turning to data-driven approaches to optimise printing conditions. Cross-sectional images of melt tracks provide valuable information for tuning process parameters, developing parameter scaling data, and identifying defects. Here we present an image segmentation neural network that automatically identifies and measures melt track dimensions from a cross-section image. We use a U-Net architecture to train on a data set of 62 pre-labelled images obtained from different labs, machines, and materials coupled with image augmentation. When neural network hyperparameters such as batch size and learning rate are properly tuned, the learned model shows an accuracy for classification of over 99% and an F1 score over 90%. The neural network exhibits robustness when tested on images captured by various users, printed on different machines, and acquired using different microscopes. A post-processing module extracts the height and width of the melt pool, and the wetting angles. We discuss opportunities to improve model performance and avenues for transfer learning, such as extension to other AM processes such as directed energy deposition.

Quantum computing is getting increasing interest from both academia and industry, and the quantum software landscape has been growing rapidly. The quantum software stack comprises quantum programs, implementing algorithms, and platforms like IBM Qiskit, Google Cirq, and Microsoft Q#, enabling their development. To ensure the reliability and performance of quantum software, various techniques for testing and analyzing it have been proposed, such as test generation, bug pattern detection, and circuit optimization. However, the large amount of work and the fact that work on quantum software is performed by several research communities, make it difficult to get a comprehensive overview of the existing techniques. In this work, we provide an extensive survey of the state of the art in testing and analysis of quantum software. We discuss literature from several research communities, including quantum computing, software engineering, programming languages, and formal methods. Our survey covers a wide range of topics, including expected and unexpected behavior of quantum programs, testing techniques, program analysis approaches, optimizations, and benchmarks for testing and analyzing quantum software. We create novel connections between the discussed topics and present them in an accessible way. Finally, we discuss key challenges and open problems to inspire future research.

Spectral Graph Convolutional Networks (GCNs) have gained popularity in graph machine learning applications due, in part, to their flexibility in specification of network propagation rules. These propagation rules are often constructed as polynomial filters whose coefficients are learned using label information during training. In contrast to learned polynomial filters, explicit filter functions are useful in capturing relationships between network topology and distribution of labels across the network. A number of algorithms incorporating either approach have been proposed; however the relationship between filter functions and polynomial approximations is not fully resolved. This is largely due to the ill-conditioned nature of the linear systems that must be solved to derive polynomial approximations of filter functions. To address this challenge, we propose a novel Arnoldi orthonormalization-based algorithm, along with a unifying approach, called G-Arnoldi-GCN that can efficiently and effectively approximate a given filter function with a polynomial. We evaluate G-Arnoldi-GCN in the context of multi-class node classification across ten datasets with diverse topological characteristics. Our experiments show that G-Arnoldi-GCN consistently outperforms state-of-the-art methods when suitable filter functions are employed. Overall, G-Arnoldi-GCN opens important new directions in graph machine learning by enabling the explicit design and application of diverse filter functions. Code link: //github.com/mustafaCoskunAgu/GArnoldi-GCN

Practical applications of artificial intelligence increasingly often have to deal with the streaming properties of real data, which, considering the time factor, are subject to phenomena such as periodicity and more or less chaotic degeneration - resulting directly in the concept drifts. The modern concept drift detectors almost always assume immediate access to labels, which due to their cost, limited availability and possible delay has been shown to be unrealistic. This work proposes an unsupervised Parallel Activations Drift Detector, utilizing the outputs of an untrained neural network, presenting its key design elements, intuitions about processing properties, and a pool of computer experiments demonstrating its competitiveness with state-of-the-art methods.

In Influence Maximization (IM), the objective is to -- given a budget -- select the optimal set of entities in a network to target with a treatment so as to maximize the total effect. For instance, in marketing, the objective is to target the set of customers that maximizes the total response rate, resulting from both direct treatment effects on targeted customers and indirect, spillover, effects that follow from targeting these customers. Recently, new methods to estimate treatment effects in the presence of network interference have been proposed. However, the issue of how to leverage these models to make better treatment allocation decisions has been largely overlooked. Traditionally, in Uplift Modeling (UM), entities are ranked according to estimated treatment effect, and the top entities are allocated treatment. Since, in a network context, entities influence each other, the UM ranking approach will be suboptimal. The problem of finding the optimal treatment allocation in a network setting is combinatorial and generally has to be solved heuristically. To fill the gap between IM and UM, we propose OTAPI: Optimizing Treatment Allocation in the Presence of Interference to find solutions to the IM problem using treatment effect estimates. OTAPI consists of two steps. First, a causal estimator is trained to predict treatment effects in a network setting. Second, this estimator is leveraged to identify an optimal treatment allocation by integrating it into classic IM algorithms. We demonstrate that this novel method outperforms classic IM and UM approaches on both synthetic and semi-synthetic datasets.

Generative AI (GAI) holds great potential to improve software engineering productivity, but its untrustworthy outputs, particularly in code synthesis, pose significant challenges. The need for extensive verification and validation (V&V) of GAI-generated artifacts may undermine the potential productivity gains. This paper proposes a way of mitigating these risks by exploiting GAI's ability to generate multiple versions of code and tests to facilitate comparative analysis across versions. Rather than relying on the quality of a single test or code module, this "differential GAI" (D-GAI) approach promotes more reliable quality evaluation through version diversity. We introduce the Large-Scale Software Observatorium (LASSO), a platform that supports D-GAI by executing and analyzing large sets of code versions and tests. We discuss how LASSO enables rigorous evaluation of GAI-generated artifacts and propose its application in both software development and GAI research.

The integration of artificial intelligence (AI) into mobile applications has significantly transformed various domains, enhancing user experiences and providing personalized services through advanced machine learning (ML) and deep learning (DL) technologies. AI-driven mobile apps typically refer to applications that leverage ML/DL technologies to perform key tasks such as image recognition and natural language processing. In this paper, we conducted the most extensive empirical study on AI applications, exploring on-device ML apps, on-device DL apps, and AI service-supported (cloud-based) apps. Our study encompasses 56,682 real-world AI applications, focusing on three crucial perspectives: 1) Application analysis, where we analyze the popularity of AI apps and investigate the update states of AI apps; 2) Framework and model analysis, where we analyze AI framework usage and AI model protection; 3) User analysis, where we examine user privacy protection and user review attitudes. Our study has strong implications for AI app developers, users, and AI R\&D. On one hand, our findings highlight the growing trend of AI integration in mobile applications, demonstrating the widespread adoption of various AI frameworks and models. On the other hand, our findings emphasize the need for robust model protection to enhance app security. Additionally, our study highlights the importance of user privacy and presents user attitudes towards the AI technologies utilized in current AI apps. We provide our AI app dataset (currently the most extensive AI app dataset) as an open-source resource for future research on AI technologies utilized in mobile applications.

The success of AI models relies on the availability of large, diverse, and high-quality datasets, which can be challenging to obtain due to data scarcity, privacy concerns, and high costs. Synthetic data has emerged as a promising solution by generating artificial data that mimics real-world patterns. This paper provides an overview of synthetic data research, discussing its applications, challenges, and future directions. We present empirical evidence from prior art to demonstrate its effectiveness and highlight the importance of ensuring its factuality, fidelity, and unbiasedness. We emphasize the need for responsible use of synthetic data to build more powerful, inclusive, and trustworthy language models.

Deep neural networks have revolutionized many machine learning tasks in power systems, ranging from pattern recognition to signal processing. The data in these tasks is typically represented in Euclidean domains. Nevertheless, there is an increasing number of applications in power systems, where data are collected from non-Euclidean domains and represented as the graph-structured data with high dimensional features and interdependency among nodes. The complexity of graph-structured data has brought significant challenges to the existing deep neural networks defined in Euclidean domains. Recently, many studies on extending deep neural networks for graph-structured data in power systems have emerged. In this paper, a comprehensive overview of graph neural networks (GNNs) in power systems is proposed. Specifically, several classical paradigms of GNNs structures (e.g., graph convolutional networks, graph recurrent neural networks, graph attention networks, graph generative networks, spatial-temporal graph convolutional networks, and hybrid forms of GNNs) are summarized, and key applications in power systems such as fault diagnosis, power prediction, power flow calculation, and data generation are reviewed in detail. Furthermore, main issues and some research trends about the applications of GNNs in power systems are discussed.

北京阿比特科技有限公司