亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We present an event-driven simulation package called QuISP for large-scale quantum networks built on top of the OMNeT++ discrete event simulation framework. Although the behavior of quantum networking devices have been revealed by recent research, it is still an open question how they will work in networks of a practical size. QuISP is designed to simulate large-scale quantum networks to investigate their behavior under realistic, noisy and heterogeneous configurations. The protocol architecture we propose enables studies of different choices for error management and other key decisions. Our confidence in the simulator is supported by comparing its output to analytic results for a small network. A key reason for simulation is to look for emergent behavior when large numbers of individually characterized devices are combined. QuISP can handle thousands of qubits in dozens of nodes on a laptop computer, preparing for full Quantum Internet simulation. This simulator promotes the development of protocols for larger and more complex quantum networks.

相關內容

Networking:IFIP International Conferences on Networking。 Explanation:國際網絡會議。 Publisher:IFIP。 SIT:

Multi-Object Tracking (MOT) is most often approached in the tracking-by-detection paradigm, where object detections are associated through time. The association step naturally leads to discrete optimization problems. As these optimization problems are often NP-hard, they can only be solved exactly for small instances on current hardware. Adiabatic quantum computing (AQC) offers a solution for this, as it has the potential to provide a considerable speedup on a range of NP-hard optimization problems in the near future. However, current MOT formulations are unsuitable for quantum computing due to their scaling properties. In this work, we therefore propose the first MOT formulation designed to be solved with AQC. We employ an Ising model that represents the quantum mechanical system implemented on the AQC. We show that our approach is competitive compared with state-of-the-art optimization-based approaches, even when using of-the-shelf integer programming solvers. Finally, we demonstrate that our MOT problem is already solvable on the current generation of real quantum computers for small examples, and analyze the properties of the measured solutions.

Network side channels (NSCs) leak secrets through packet timing and packet sizes. They are of particular concern in public IaaS Clouds, where any tenant may be able to colocate and indirectly observe a victim's traffic shape. We present Pacer, the first system that eliminates NSC leaks in public IaaS Clouds end-to-end. It builds on the principled technique of shaping guest traffic outside the guest to make the traffic shape independent of secrets by design. However, Pacer also addresses important concerns that have not been considered in prior work -- it prevents internal side-channel leaks from affecting reshaped traffic, and it respects network flow control, congestion control and loss recovery signals. Pacer is implemented as a paravirtualizing extension to the host hypervisor, requiring modest changes to the hypervisor and the guest kernel, and only optional, minimal changes to applications. We present Pacer's key abstraction of a cloaked tunnel, describe its design and implementation, prove the security of important design aspects through a formal model, and show through an experimental evaluation that Pacer imposes moderate overheads on bandwidth, client latency, and server throughput, while thwarting attacks based on state-of-the-art CNN classifiers.

The highly directional beams applied in millimeter wave (mmWave) cellular networks make it possible to achieve near interference-free (NIF) transmission under judiciously designed space-time user scheduling, where the power of intra-/inter-cell interference between any two users is below a predefined threshold. In this paper, we investigate two aspects of the NIF space-time user scheduling in a multi-cell mmWave network with multi-RF-chain base stations. Firstly, given that each user has a requirement on the number of space-time resource elements, we study the NIF user scheduling problem to minimize the unfulfilled user requirements, so that the space-time resources can be utilized most efficiently and meanwhile all strong interferences are avoided. A near-optimal scheduling algorithm is proposed with performance close to the lower bound of unfulfilled requirements. Furthermore, we study the joint NIF user scheduling and power allocation problem to minimize the power consumption under the constraint of rate requirements. Based on our proposed NIF scheduling, an energy-efficient joint scheduling and power allocation scheme is designed with limited channel state information, which outperforms the existing independent set based schemes, and has near-optimal performance as well.

Determining capacities of quantum channels is a fundamental question in quantum information theory. Despite having rigorous coding theorems quantifying the flow of information across quantum channels, their capacities are poorly understood due to super-additivity effects. Studying these phenomena is important for deepening our understanding of quantum information, yet simple and clean examples of super-additive channels are scarce. Here we study a simple family of qutrit channels called the platypus channel, and show that it exhibits super-additivity of coherent information when used jointly with a variety of qubit channels. A higher-dimensional variant of the platypus channel displays super-additivity of quantum capacity together with an erasure channel. Subject to the "spin-alignment conjecture" introduced in a companion paper, our results on super-additivity of quantum capacity extend to lower-dimensional channels as well as larger parameter ranges. In particular, super-additivity occurs between two weakly additive channels each with large capacity on their own, in stark contrast to previous results. Remarkably, a single, novel transmission strategy achieves super-additivity in all examples. Our results show that super-additivity is much more prevalent than previously thought. It can occur across a wide variety of channels, even when both participating channels have large quantum capacity.

In the training of over-parameterized model functions via gradient descent, sometimes the parameters do not change significantly and remain close to their initial values. This phenomenon is called lazy training, and motivates consideration of the linear approximation of the model function around the initial parameters. In the lazy regime, this linear approximation imitates the behavior of the parameterized function whose associated kernel, called the tangent kernel, specifies the training performance of the model. Lazy training is known to occur in the case of (classical) neural networks with large widths. In this paper, we show that the training of geometrically local parameterized quantum circuits enters the lazy regime for large numbers of qubits. More precisely, we prove bounds on the rate of changes of the parameters of such a geometrically local parameterized quantum circuit in the training process, and on the precision of the linear approximation of the associated quantum model function; both of these bounds tend to zero as the number of qubits grows. We support our analytic results with numerical simulations.

This technical report describes GrADyS-SIM, a framework for simulating cooperating swarms of UAVs in joint mission in hypothetical landscape and communicating through RF radios. The framework was created to aid and verify the communication, coordination and context-awareness protocols being developed in the GrADyS project. GrADyS-SIM uses the OMNeT++ simulation library and its INET model suite and and allows for addition of modified or customized versions of some simulated components, network configurations and vehicle coordination, so that new coordination protocols can be developed and tested through the framework. The framework simulates UAV movement dictated by file containing some MAVLink instructions and affected on the fly by different network situations. The UAV swarm coordination protocol emerges from individual interactions between UAVs and has the objective of optimizing the collection of sensor data over an area. It also allows for the simulation of some types of failures to test the protocol adaptability. Every node in the simulation is highly configurable making testing different network opographies, coordination protocols, node hardware configurations and more a quick task.

We initiate the study of parameterized complexity of $\textsf{QMA}$ problems in terms of the number of non-Clifford gates in the problem description. We show that for the problem of parameterized quantum circuit satisfiability, there exists a classical algorithm solving the problem with a runtime scaling exponentially in the number of non-Clifford gates but only polynomially with the system size. This result follows from our main result, that for any Clifford + $t$ $T$-gate quantum circuit satisfiability problem, the search space of optimal witnesses can be reduced to a stabilizer subspace isomorphic to at most $t$ qubits (independent of the system size). Furthermore, we derive new lower bounds on the $T$-count of circuit satisfiability instances and the $T$-count of the $W$-state assuming the classical exponential time hypothesis ($\textsf{ETH}$). Lastly, we explore the parameterized complexity of the quantum non-identity check problem.

In 5G and beyond systems, the notion of latency gets a great momentum in wireless connectivity as a metric for serving real-time communications requirements. However, in many applications, research has pointed out that latency could be inefficient to handle applications with data freshness requirements. Recently, the notion of Age of Information (AoI) that can capture the freshness of the data has attracted a lot of attention. In this work, we consider mixed traffic with time-sensitive users; a deadline-constrained user, and an AoI-oriented user. To develop an efficient scheduling policy, we cast a novel optimization problem formulation for minimizing the average AoI while satisfying the timely throughput constraints. The formulated problem is cast as a Constrained Markov Decision Process (CMDP). We relax the constrained problem to an unconstrained Markov Decision Process (MDP) problem by utilizing Lyapunov optimization theory and it can be proved that it is solved per frame by applying backward dynamic programming algorithms with optimality guarantees. Simulation results show that the timely throughput constraints are satisfied while minimizing the average AoI. Also, simulation results show the convergence of the algorithm for different values of the weighted factor and the trade-off between the AoI and the timely throughput.

A successful real estate search process involves locating a property that meets a user's search criteria subject to an allocated budget and time constraints. Many studies have investigated modeling housing prices over time. However, little is known about how a user's tastes influence their real estate search and purchase decisions. It is unknown what house a user would choose taking into account an individual's personal tastes, behaviors, and constraints, and, therefore, creating an algorithm that finds the perfect match. In this paper, we investigate the first step in understanding a user's tastes by building a system to capture personal preferences. We concentrated our research on real estate photos, being inspired by house aesthetics, which often motivates prospective buyers into considering a property as a candidate for purchase. We designed a system that takes a user-provided photo representing that person's personal taste and recommends properties similar to the photo available on the market. The user can additionally filter the recommendations by budget and location when conducting a property search. The paper describes the application's overall layout including frontend design and backend processes for locating a desired property. The proposed model, which serves as the application's core, was tested with 25 users, and the study's findings, as well as some key conclusions, are detailed in this paper.

The problem of Approximate Nearest Neighbor (ANN) search is fundamental in computer science and has benefited from significant progress in the past couple of decades. However, most work has been devoted to pointsets whereas complex shapes have not been sufficiently treated. Here, we focus on distance functions between discretized curves in Euclidean space: they appear in a wide range of applications, from road segments to time-series in general dimension. For $\ell_p$-products of Euclidean metrics, for any $p$, we design simple and efficient data structures for ANN, based on randomized projections, which are of independent interest. They serve to solve proximity problems under a notion of distance between discretized curves, which generalizes both discrete Fr\'echet and Dynamic Time Warping distances. These are the most popular and practical approaches to comparing such curves. We offer the first data structures and query algorithms for ANN with arbitrarily good approximation factor, at the expense of increasing space usage and preprocessing time over existing methods. Query time complexity is comparable or significantly improved by our algorithms, our algorithm is especially efficient when the length of the curves is bounded.

北京阿比特科技有限公司