亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Smart manufacturing systems involve a large number of interconnected devices resulting in massive data generation. Cloud computing technology has recently gained increasing attention in smart manufacturing systems for facilitating cost-effective service provisioning and massive data management. In a cloud-based manufacturing system, ensuring authorized access to the data is crucial. A cloud platform is operated under a single authority. Hence, a cloud platform is prone to a single point of failure and vulnerable to adversaries. An internal or external adversary can easily modify users' access to allow unauthorized users to access the data. This paper proposes a role-based access control to prevent modification attacks by leveraging blockchain and smart contracts in a cloud-based smart manufacturing system. The role-based access control is developed to determine users' roles and rights in smart contracts. The smart contracts are then deployed to the private blockchain network. We evaluate our solution by utilizing Ethereum private blockchain network to deploy the smart contract. The experimental results demonstrate the feasibility and evaluation of the proposed framework's performance.

相關內容

This paper discusses the challenges faced by cyber-physical microgrids (MGs) due to the inclusion of information and communication technologies in their already complex, multi-layered systems. The work identifies a research gap in modeling and analyzing stealthy intermittent integrity attacks in MGs, which are designed to maximize damage and cancel secondary control objectives. To address this, the paper proposes a nonlinear residual-based observer approach to detect and mitigate such attacks. In order to ensure a stable operation of the MG, the formulation then incorporates stability constraints along with the detection observer. The proposed design is validated through case studies on a MG benchmark with four distributed generators, demonstrating its effectiveness in detecting attacks while satisfying network and stability constraints.

Multi-party business processes rely on the collaboration of various players in a decentralized setting. Blockchain technology can facilitate the automation of these processes, even in cases where trust among participants is limited. Transactions are stored in a ledger, a replica of which is retained by every node of the blockchain network. The operations saved thereby are thus publicly accessible. While this enhances transparency, reliability, and persistence, it hinders the utilization of public blockchains for process automation as it violates typical confidentiality requirements in corporate settings. In this paper, we propose MARTSIA: A Multi-Authority Approach to Transaction Systems for Interoperating Applications. MARTSIA enables precise control over process data at the level of message parts. Based on Multi-Authority Attribute-Based Encryption (MA-ABE), MARTSIA realizes a number of desirable properties, including confidentiality, transparency, and auditability. We implemented our approach in proof-of-concept prototypes, with which we conduct a case study in the area of supply chain management. Also, we show the integration of MARTSIA with a state-of-the-art blockchain-based process execution engine to secure the data flow.

Identity and Access Management (IAM) is an access control service in cloud platforms. To securely manage cloud resources, customers are required to configure IAM to specify the access control rules for their cloud organizations. However, IAM misconfiguration may be exploited to perform privilege escalation attacks, which can cause severe economic loss. To detect privilege escalations due to IAM misconfigurations, existing third-party cloud security services apply whitebox penetration testing techniques, requiring the access of complete IAM configurations. To prevent sensitive information disclosure, this requirement places a considerable burden on customers, demanding lots of manual efforts for the anonymization of their configurations. In this paper, we propose a precise greybox penetration testing approach called TAC for third-party services to detect IAM privilege escalations. To mitigate the dual challenges of labor-intensive anonymizations and potential sensitive information disclosures, TAC interacts with customers by selectively querying only the essential information needed. To accomplish this, we first propose abstract IAM modeling, enabling TAC to detect IAM privilege escalations based on the partial information collected from queries. Moreover, to improve the efficiency and applicability of TAC, we minimize the interactions with customers by applying Reinforcement Learning (RL) with Graph Neural Networks (GNNs), allowing TAC to learn to make as few queries as possible. To pretrain and evaluate TAC with enough diverse tasks, we propose an IAM privilege escalation task generator called IAMVulGen. Experimental results on both our task set and the only publicly available task set IAM Vulnerable show that, in comparison to state-of-the-art whitebox approaches, TAC detects IAM privilege escalations with competitively low false negative rates, employing a limited number of queries.

Falls among the elderly are a major health concern, frequently resulting in serious injuries and a reduced quality of life. In this paper, we propose "BlockTheFall," a wearable device-based fall detection framework which detects falls in real time by using sensor data from wearable devices. To accurately identify patterns and detect falls, the collected sensor data is analyzed using machine learning algorithms. To ensure data integrity and security, the framework stores and verifies fall event data using blockchain technology. The proposed framework aims to provide an efficient and dependable solution for fall detection with improved emergency response, and elderly individuals' overall well-being. Further experiments and evaluations are being carried out to validate the effectiveness and feasibility of the proposed framework, which has shown promising results in distinguishing genuine falls from simulated falls. By providing timely and accurate fall detection and response, this framework has the potential to substantially boost the quality of elderly care.

New network architectures, such as the Internet of Things (IoT), 5G, and next-generation (NextG) cellular systems, put forward emerging challenges to the design of future wireless networks toward ultra-high data rate, massive data processing, smart designs, low-cost deployment, reliability and security in dynamic environments. As one of the most promising techniques today, artificial intelligence (AI) is advocated to enable a data-driven paradigm for wireless network design. In this paper, we are motivated to review existing AI techniques and their applications for the full wireless network protocol stack toward improving network performance and security. Our goal is to summarize the current motivation, challenges, and methodology of using AI to enhance wireless networking from the physical to the application layer, and shed light on creating new AI-enabled algorithms, mechanisms, protocols, and system designs for future data-driven wireless networking.

For many years, car keys have been the sole mean of authentication in vehicles. Whether the access control process is physical or wireless, entrusting the ownership of a vehicle to a single token is prone to stealing attempts. For this reason, many researchers started developing behavior-based authentication systems. By collecting data in a moving vehicle, Deep Learning (DL) models can recognize patterns in the data and identify drivers based on their driving behavior. This can be used as an anti-theft system, as a thief would exhibit a different driving style compared to the vehicle owner's. However, the assumption that an attacker cannot replicate the legitimate driver behavior falls under certain conditions. In this paper, we propose GAN-CAN, the first attack capable of fooling state-of-the-art behavior-based driver authentication systems in a vehicle. Based on the adversary's knowledge, we propose different GAN-CAN implementations. Our attack leverages the lack of security in the Controller Area Network (CAN) to inject suitably designed time-series data to mimic the legitimate driver. Our design of the malicious time series results from the combination of different Generative Adversarial Networks (GANs) and our study on the safety importance of the injected values during the attack. We tested GAN-CAN in an improved version of the most efficient driver behavior-based authentication model in the literature. We prove that our attack can fool it with an attack success rate of up to 0.99. We show how an attacker, without prior knowledge of the authentication system, can steal a car by deploying GAN-CAN in an off-the-shelf system in under 22 minutes.

Having unmanned aerial vehicles (UAVs) with edge computing capability hover over smart farmlands supports Internet of Things (IoT) devices with low processing capacity and power to accomplish their deadline-sensitive tasks efficiently and economically. In this work, we propose a graph neural network-based reinforcement learning solution to optimize the task offloading from these IoT devices to the UAVs. We conduct evaluations to show that our approach reduces task deadline violations while also increasing the mission time of the UAVs by optimizing their battery usage. Moreover, the proposed solution has increased robustness to network topology changes and is able to adapt to extreme cases, such as the failure of a UAV.

Today's blockchains suffer from low throughput and high latency, which impedes their widespread adoption of more complex applications like smart contracts. In this paper, we propose a novel paradigm for smart contract execution. It distinguishes between consensus nodes and execution nodes: different groups of execution nodes can execute transactions in parallel; meanwhile, consensus nodes can asynchronously order transactions and process execution results. Moreover, it requires no coordination among execution nodes and can effectively prevent livelocks. We show two ways of applying this paradigm to blockchains. First, we show how we can make Ethereum support parallel and asynchronous contract execution \emph{without hard-forks}. Then, we propose a new public, permissionless blockchain. Our benchmark shows that, with a fast consensus layer, it can provide a high throughput even for complex transactions like Cryptokitties gene mixing. It can also protect simple transactions from being starved by complex transactions.

It has been a long time that computer architecture and systems are optimized to enable efficient execution of machine learning (ML) algorithms or models. Now, it is time to reconsider the relationship between ML and systems, and let ML transform the way that computer architecture and systems are designed. This embraces a twofold meaning: the improvement of designers' productivity, and the completion of the virtuous cycle. In this paper, we present a comprehensive review of work that applies ML for system design, which can be grouped into two major categories, ML-based modelling that involves predictions of performance metrics or some other criteria of interest, and ML-based design methodology that directly leverages ML as the design tool. For ML-based modelling, we discuss existing studies based on their target level of system, ranging from the circuit level to the architecture/system level. For ML-based design methodology, we follow a bottom-up path to review current work, with a scope of (micro-)architecture design (memory, branch prediction, NoC), coordination between architecture/system and workload (resource allocation and management, data center management, and security), compiler, and design automation. We further provide a future vision of opportunities and potential directions, and envision that applying ML for computer architecture and systems would thrive in the community.

The concept of smart grid has been introduced as a new vision of the conventional power grid to figure out an efficient way of integrating green and renewable energy technologies. In this way, Internet-connected smart grid, also called energy Internet, is also emerging as an innovative approach to ensure the energy from anywhere at any time. The ultimate goal of these developments is to build a sustainable society. However, integrating and coordinating a large number of growing connections can be a challenging issue for the traditional centralized grid system. Consequently, the smart grid is undergoing a transformation to the decentralized topology from its centralized form. On the other hand, blockchain has some excellent features which make it a promising application for smart grid paradigm. In this paper, we have an aim to provide a comprehensive survey on application of blockchain in smart grid. As such, we identify the significant security challenges of smart grid scenarios that can be addressed by blockchain. Then, we present a number of blockchain-based recent research works presented in different literatures addressing security issues in the area of smart grid. We also summarize several related practical projects, trials, and products that have been emerged recently. Finally, we discuss essential research challenges and future directions of applying blockchain to smart grid security issues.

北京阿比特科技有限公司