亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

The isomorphism problem is a fundamental problem in network analysis, which involves capturing both low-order and high-order structural information. In terms of extracting low-order structural information, graph isomorphism algorithms analyze the structural equivalence to reduce the solver space dimension, which demonstrates its power in many applications, such as protein design, chemical pathways, and community detection. For the more commonly occurring high-order relationships in real-life scenarios, the problem of hypergraph isomorphism, which effectively captures these high-order structural relationships, cannot be straightforwardly addressed using graph isomorphism methods. Besides, the existing hypergraph kernel methods may suffer from high memory consumption or inaccurate sub-structure identification, thus yielding sub-optimal performance. In this paper, to address the abovementioned problems, we first propose the hypergraph Weisfiler-Lehman test algorithm for the hypergraph isomorphism test problem by generalizing the Weisfiler-Lehman test algorithm from graphs to hypergraphs. Secondly, based on the presented algorithm, we propose a general hypergraph Weisfieler-Lehman kernel framework and implement two instances, which are Hypergraph Weisfeiler-Lehamn Subtree Kernel and Hypergraph Weisfeiler-Lehamn Hyperedge Kernel. In order to fulfill our research objectives, a comprehensive set of experiments was meticulously designed, including seven graph classification datasets and 12 hypergraph classification datasets. Results on hypergraph classification datasets show significant improvements compared to other typical kernel-based methods, which demonstrates the effectiveness of the proposed methods. In our evaluation, we found that our proposed methods outperform the second-best method in terms of runtime, running over 80 times faster when handling complex hypergraph structures.

相關內容

Unsupervised visual clustering has recently received considerable attention. It aims to explain distributions of unlabeled visual images by clustering them via a parameterized appearance model. From a different perspective, the clustering algorithms can be treated as assignment problems, often NP-hard. They can be solved precisely for small instances on current hardware. Adiabatic quantum computing (AQC) offers a solution, as it can soon provide a considerable speedup on a range of NP-hard optimization problems. However, current clustering formulations are unsuitable for quantum computing due to their scaling properties. Consequently, in this work, we propose the first clustering formulation designed to be solved with AQC. We employ an Ising model representing the quantum mechanical system implemented on the AQC. Our approach is competitive compared to state-of-the-art optimization-based approaches, even using of-the-shelf integer programming solvers. Finally, we demonstrate that our clustering problem is already solvable on the current generation of real quantum computers for small examples and analyze the properties of the measured solutions.

Listing and counting triangles in graphs is a key algorithmic kernel for network analyses including community detection, clustering coefficients, k-trusses, and triangle centrality. We design and implement a new serial algorithm for triangle counting that performs competitively with the fastest previous approaches on both real and synthetic graphs, such as those from the Graph500 Benchmark and the MIT/Amazon/IEEE Graph Challenge. The experimental results use the recently-launched Intel Xeon Platinum 8480+ and CPU Max 9480 processors.

This paper introduces a dynamic logic extension of separation logic. The assertion language of separation logic is extended with modalities for the five types of the basic instructions of separation logic: simple assignment, look-up, mutation, allocation, and de-allocation. The main novelty of the resulting dynamic logic is that it allows to combine different approaches to resolving these modalities. One such approach is based on the standard weakest precondition calculus of separation logic. The other approach introduced in this paper provides a novel alternative formalization in the proposed dynamic logic extension of separation logic. The soundness and completeness of this axiomatization has been formalized in the Coq theorem prover.

Convolutional layers are a fundamental component of most image-related models. These layers often implement by default a static padding policy (\eg zero padding), to control the scale of the internal representations, and to allow kernel activations centered on the border regions. In this work we identify Padding Aware Neurons (PANs), a type of filter that is found in most (if not all) convolutional models trained with static padding. PANs focus on the characterization and recognition of input border location, introducing a spatial inductive bias into the model (e.g., how close to the input's border a pattern typically is). We propose a method to identify PANs through their activations, and explore their presence in several popular pre-trained models, finding PANs on all models explored, from dozens to hundreds. We discuss and illustrate different types of PANs, their kernels and behaviour. To understand their relevance, we test their impact on model performance, and find padding and PANs to induce strong and characteristic biases in the data. Finally, we discuss whether or not PANs are desirable, as well as the potential side effects of their presence in the context of model performance, generalisation, efficiency and safety.

We consider the problem of determining which matrices are permutable to be supmodular. We show that for small dimensions any matrix is permutable by a universal permutation or by a pair of permutations, while for higher dimensions no universal permutation exists. We raise several questions including to determine the dimensions in which every matrix is permutable.

Bayesian predictive inference provides a coherent description of entire predictive uncertainty through predictive distributions. We examine several widely used sparsity priors from the predictive (as opposed to estimation) inference viewpoint. Our context is estimating a predictive distribution of a high-dimensional Gaussian observation with a known variance but an unknown sparse mean under the Kullback-Leibler loss. First, we show that LASSO (Laplace) priors are incapable of achieving rate-optimal performance. This new result contributes to the literature on negative findings about Bayesian LASSO posteriors. However, deploying the Laplace prior inside the Spike-and-Slab framework (for example with the Spike-and-Slab LASSO prior), rate-minimax performance can be attained with properly tuned parameters (depending on the sparsity level sn). We highlight the discrepancy between prior calibration for the purpose of prediction and estimation. Going further, we investigate popular hierarchical priors which are known to attain adaptive rate-minimax performance for estimation. Whether or not they are rate-minimax also for predictive inference has, until now, been unclear. We answer affirmatively by showing that hierarchical Spike-and-Slab priors are adaptive and attain the minimax rate without the knowledge of sn. This is the first rate-adaptive result in the literature on predictive density estimation in sparse setups. This finding celebrates benefits of fully Bayesian inference.

Humans perceive the world by concurrently processing and fusing high-dimensional inputs from multiple modalities such as vision and audio. Machine perception models, in stark contrast, are typically modality-specific and optimised for unimodal benchmarks, and hence late-stage fusion of final representations or predictions from each modality (`late-fusion') is still a dominant paradigm for multimodal video classification. Instead, we introduce a novel transformer based architecture that uses `fusion bottlenecks' for modality fusion at multiple layers. Compared to traditional pairwise self-attention, our model forces information between different modalities to pass through a small number of bottleneck latents, requiring the model to collate and condense the most relevant information in each modality and only share what is necessary. We find that such a strategy improves fusion performance, at the same time reducing computational cost. We conduct thorough ablation studies, and achieve state-of-the-art results on multiple audio-visual classification benchmarks including Audioset, Epic-Kitchens and VGGSound. All code and models will be released.

Minimizing cross-entropy over the softmax scores of a linear map composed with a high-capacity encoder is arguably the most popular choice for training neural networks on supervised learning tasks. However, recent works show that one can directly optimize the encoder instead, to obtain equally (or even more) discriminative representations via a supervised variant of a contrastive objective. In this work, we address the question whether there are fundamental differences in the sought-for representation geometry in the output space of the encoder at minimal loss. Specifically, we prove, under mild assumptions, that both losses attain their minimum once the representations of each class collapse to the vertices of a regular simplex, inscribed in a hypersphere. We provide empirical evidence that this configuration is attained in practice and that reaching a close-to-optimal state typically indicates good generalization performance. Yet, the two losses show remarkably different optimization behavior. The number of iterations required to perfectly fit to data scales superlinearly with the amount of randomly flipped labels for the supervised contrastive loss. This is in contrast to the approximately linear scaling previously reported for networks trained with cross-entropy.

Graph representation learning is to learn universal node representations that preserve both node attributes and structural information. The derived node representations can be used to serve various downstream tasks, such as node classification and node clustering. When a graph is heterogeneous, the problem becomes more challenging than the homogeneous graph node learning problem. Inspired by the emerging information theoretic-based learning algorithm, in this paper we propose an unsupervised graph neural network Heterogeneous Deep Graph Infomax (HDGI) for heterogeneous graph representation learning. We use the meta-path structure to analyze the connections involving semantics in heterogeneous graphs and utilize graph convolution module and semantic-level attention mechanism to capture local representations. By maximizing local-global mutual information, HDGI effectively learns high-level node representations that can be utilized in downstream graph-related tasks. Experiment results show that HDGI remarkably outperforms state-of-the-art unsupervised graph representation learning methods on both classification and clustering tasks. By feeding the learned representations into a parametric model, such as logistic regression, we even achieve comparable performance in node classification tasks when comparing with state-of-the-art supervised end-to-end GNN models.

Graphs, which describe pairwise relations between objects, are essential representations of many real-world data such as social networks. In recent years, graph neural networks, which extend the neural network models to graph data, have attracted increasing attention. Graph neural networks have been applied to advance many different graph related tasks such as reasoning dynamics of the physical system, graph classification, and node classification. Most of the existing graph neural network models have been designed for static graphs, while many real-world graphs are inherently dynamic. For example, social networks are naturally evolving as new users joining and new relations being created. Current graph neural network models cannot utilize the dynamic information in dynamic graphs. However, the dynamic information has been proven to enhance the performance of many graph analytical tasks such as community detection and link prediction. Hence, it is necessary to design dedicated graph neural networks for dynamic graphs. In this paper, we propose DGNN, a new {\bf D}ynamic {\bf G}raph {\bf N}eural {\bf N}etwork model, which can model the dynamic information as the graph evolving. In particular, the proposed framework can keep updating node information by capturing the sequential information of edges, the time intervals between edges and information propagation coherently. Experimental results on various dynamic graphs demonstrate the effectiveness of the proposed framework.

北京阿比特科技有限公司