亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Music source separation (MSS) aims to separate a music recording into multiple musically distinct stems, such as vocals, bass, drums, and more. Recently, deep learning approaches such as convolutional neural networks (CNNs) and recurrent neural networks (RNNs) have been used, but the improvement is still limited. In this paper, we propose a novel frequency-domain approach based on a Band-Split RoPE Transformer (called BS-RoFormer). BS-RoFormer relies on a band-split module to project the input complex spectrogram into subband-level representations, and then arranges a stack of hierarchical Transformers to model the inner-band as well as inter-band sequences for multi-band mask estimation. To facilitate training the model for MSS, we propose to use the Rotary Position Embedding (RoPE). The BS-RoFormer system trained on MUSDB18HQ and 500 extra songs ranked the first place in the MSS track of Sound Demixing Challenge (SDX23). Benchmarking a smaller version of BS-RoFormer on MUSDB18HQ, we achieve state-of-the-art result without extra training data, with 9.80 dB of average SDR.

相關內容

Object Based Audio (OBA) provides a new kind of audio experience, delivered to the audience to personalize and customize their experience of listening and to give them choice of what and how to hear their audio content. OBA can be applied to different platforms such as broadcasting, streaming and cinema sound. This paper presents a novel approach for creating object-based audio on the production side. The approach here presents Sample-by-Sample Object Based Audio (SSOBA) embedding. SSOBA places audio object samples in such a way that allows audiences to easily individualize their chosen audio sources according to their interests and needs. SSOBA is an extra service and not an alternative, so it is also compliant with legacy audio players. The biggest advantage of SSOBA is that it does not require any special additional hardware in the broadcasting chain and it is therefore easy to implement and equip legacy players and decoders with enhanced ability. Input audio objects, number of output channels and sampling rates are three important factors affecting SSOBA performance and specifying it to be lossless or lossy. SSOBA adopts interpolation at the decoder side to compensate for eliminated samples. Both subjective and objective experiments are carried out to evaluate the output results at each step. MUSHRA subjective experiments conducted after the encoding step shows good-quality performance of SSOBA with up to five objects. SNR measurements and objective experiments, performed after decoding and interpolation, show significant successful recovery and separation of audio objects. Experimental results show that a minimum sampling rate of 96 kHz is indicated to encode up to five objects in a Stereo-mode channel to acquire good subjective and objective results simultaneously.

Representation Learning on Knowledge Graphs (KGs) is essential for downstream tasks. The dominant approach, KG Embedding (KGE), represents entities with independent vectors and faces the scalability challenge. Recent studies propose an alternative way for parameter efficiency, which represents entities by composing entity-corresponding codewords matched from predefined small-scale codebooks. We refer to the process of obtaining corresponding codewords of each entity as entity quantization, for which previous works have designed complicated strategies. Surprisingly, this paper shows that simple random entity quantization can achieve similar results to current strategies. We analyze this phenomenon and reveal that entity codes, the quantization outcomes for expressing entities, have higher entropy at the code level and Jaccard distance at the codeword level under random entity quantization. Therefore, different entities become more easily distinguished, facilitating effective KG representation. The above results show that current quantization strategies are not critical for KG representation, and there is still room for improvement in entity distinguishability beyond current strategies. The code to reproduce our results is available at //github.com/JiaangL/RandomQuantization.

Neural Module Networks (NMN) are a compelling method for visual question answering, enabling the translation of a question into a program consisting of a series of reasoning sub-tasks that are sequentially executed on the image to produce an answer. NMNs provide enhanced explainability compared to integrated models, allowing for a better understanding of the underlying reasoning process. To improve the effectiveness of NMNs we propose to exploit features obtained by a large-scale cross-modal encoder. Also, the current training approach of NMNs relies on the propagation of module outputs to subsequent modules, leading to the accumulation of prediction errors and the generation of false answers. To mitigate this, we introduce an NMN learning strategy involving scheduled teacher guidance. Initially, the model is fully guided by the ground-truth intermediate outputs, but gradually transitions to an autonomous behavior as training progresses. This reduces error accumulation, thus improving training efficiency and final performance.We demonstrate that by incorporating cross-modal features and employing more effective training techniques for NMN, we achieve a favorable balance between performance and transparency in the reasoning process.

Prompt Tuning is emerging as a scalable and cost-effective method to fine-tune Pretrained Language Models (PLMs), which are often referred to as Large Language Models (LLMs). This study benchmarks the performance and computational efficiency of Prompt Tuning and baselines for multi-label text classification. This is applied to the challenging task of classifying companies into an investment firm's proprietary industry taxonomy, supporting their thematic investment strategy. Text-to-text classification is frequently reported to outperform task-specific classification heads, but has several limitations when applied to a multi-label classification problem where each label consists of multiple tokens: (a) Generated labels may not match any label in the label taxonomy; (b) The fine-tuning process lacks permutation invariance and is sensitive to the order of the provided labels; (c) The model provides binary decisions rather than appropriate confidence scores. Limitation (a) is addressed by applying constrained decoding using Trie Search, which slightly improves classification performance. All limitations (a), (b), and (c) are addressed by replacing the PLM's language head with a classification head, which is referred to as Prompt Tuned Embedding Classification (PTEC). This improves performance significantly, while also reducing computational costs during inference. In our industrial application, the training data is skewed towards well-known companies. We confirm that the model's performance is consistent across both well-known and less-known companies. Our overall results indicate the continuing need to adapt state-of-the-art methods to domain-specific tasks, even in the era of PLMs with strong generalization abilities. We release our codebase and a benchmarking dataset at //github.com/EQTPartners/PTEC.

Code-switching (CS), i.e. mixing different languages in a single sentence, is a common phenomenon in communication and can be challenging in many Natural Language Processing (NLP) settings. Previous studies on CS speech have shown promising results for end-to-end speech translation (ST), but have been limited to offline scenarios and to translation to one of the languages present in the source (\textit{monolingual transcription}). In this paper, we focus on two essential yet unexplored areas for real-world CS speech translation: streaming settings, and translation to a third language (i.e., a language not included in the source). To this end, we extend the Fisher and Miami test and validation datasets to include new targets in Spanish and German. Using this data, we train a model for both offline and streaming ST and we establish baseline results for the two settings mentioned earlier.

First-shot (FS) unsupervised anomalous sound detection (ASD) is a brand-new task introduced in DCASE 2023 Challenge Task 2, where the anomalous sounds for the target machine types are unseen in training. Existing methods often rely on the availability of normal and abnormal sound data from the target machines. However, due to the lack of anomalous sound data for the target machine types, it becomes challenging when adapting the existing ASD methods to the first-shot task. In this paper, we propose a new framework for the first-shot unsupervised ASD, where metadata-assisted audio generation is used to estimate unknown anomalies, by utilising the available machine information (i.e., metadata and sound data) to fine-tune a text-to-audio generation model for generating the anomalous sounds that contain unique acoustic characteristics accounting for each different machine types. We then use the method of Time-Weighted Frequency domain audio Representation with Gaussian Mixture Model (TWFR-GMM) as the backbone to achieve the first-shot unsupervised ASD. Our proposed FS-TWFR-GMM method achieves competitive performance amongst top systems in DCASE 2023 Challenge Task 2, while requiring only 1% model parameters for detection, as validated in our experiments.

Audio fingerprinting is a well-established solution for song identification from short recording excerpts. Popular methods rely on the extraction of sparse representations, generally spectral peaks, and have proven to be accurate, fast, and scalable to large collections. However, real-world applications of audio identification often happen in noisy environments, which can cause these systems to fail. In this work, we tackle this problem by introducing and releasing a new audio augmentation pipeline that adds noise to music snippets in a realistic way, by stochastically mimicking real-world scenarios. We then propose and release a deep learning model that removes noisy components from spectrograms in order to improve peak-based fingerprinting systems' accuracy. We show that the addition of our model improves the identification performance of commonly used audio fingerprinting systems, even under noisy conditions.

Few-shot Knowledge Graph (KG) completion is a focus of current research, where each task aims at querying unseen facts of a relation given its few-shot reference entity pairs. Recent attempts solve this problem by learning static representations of entities and references, ignoring their dynamic properties, i.e., entities may exhibit diverse roles within task relations, and references may make different contributions to queries. This work proposes an adaptive attentional network for few-shot KG completion by learning adaptive entity and reference representations. Specifically, entities are modeled by an adaptive neighbor encoder to discern their task-oriented roles, while references are modeled by an adaptive query-aware aggregator to differentiate their contributions. Through the attention mechanism, both entities and references can capture their fine-grained semantic meanings, and thus render more expressive representations. This will be more predictive for knowledge acquisition in the few-shot scenario. Evaluation in link prediction on two public datasets shows that our approach achieves new state-of-the-art results with different few-shot sizes.

Video captioning is a challenging task that requires a deep understanding of visual scenes. State-of-the-art methods generate captions using either scene-level or object-level information but without explicitly modeling object interactions. Thus, they often fail to make visually grounded predictions, and are sensitive to spurious correlations. In this paper, we propose a novel spatio-temporal graph model for video captioning that exploits object interactions in space and time. Our model builds interpretable links and is able to provide explicit visual grounding. To avoid unstable performance caused by the variable number of objects, we further propose an object-aware knowledge distillation mechanism, in which local object information is used to regularize global scene features. We demonstrate the efficacy of our approach through extensive experiments on two benchmarks, showing our approach yields competitive performance with interpretable predictions.

We propose a novel single shot object detection network named Detection with Enriched Semantics (DES). Our motivation is to enrich the semantics of object detection features within a typical deep detector, by a semantic segmentation branch and a global activation module. The segmentation branch is supervised by weak segmentation ground-truth, i.e., no extra annotation is required. In conjunction with that, we employ a global activation module which learns relationship between channels and object classes in a self-supervised manner. Comprehensive experimental results on both PASCAL VOC and MS COCO detection datasets demonstrate the effectiveness of the proposed method. In particular, with a VGG16 based DES, we achieve an mAP of 81.7 on VOC2007 test and an mAP of 32.8 on COCO test-dev with an inference speed of 31.5 milliseconds per image on a Titan Xp GPU. With a lower resolution version, we achieve an mAP of 79.7 on VOC2007 with an inference speed of 13.0 milliseconds per image.

北京阿比特科技有限公司