A long tradition of studies in psycholinguistics has examined the formation and generalization of ad hoc conventions in reference games, showing how newly acquired conventions for a given target transfer to new referential contexts. However, another axis of generalization remains understudied: how do conventions formed for one target transfer to completely distinct targets, when specific lexical choices are unlikely to repeat? This paper presents two dyadic studies (N = 240) that address this axis of generalization, focusing on the role of nameability -- the a priori likelihood that two individuals will share the same label. We leverage the recently-released KiloGram dataset, a collection of abstract tangram images that is orders of magnitude larger than previously available, exhibiting high diversity of properties like nameability. Our first study asks how nameability shapes convention formation, while the second asks how new conventions generalize to entirely new targets of reference. Our results raise new questions about how ad hoc conventions extend beyond target-specific re-use of specific lexical choices.
Zero-shot Learning (ZSL) classification categorizes or predicts classes (labels) that are not included in the training set (unseen classes). Recent works proposed different semantic autoencoder (SAE) models where the encoder embeds a visual feature vector space into the semantic space and the decoder reconstructs the original visual feature space. The objective is to learn the embedding by leveraging a source data distribution, which can be applied effectively to a different but related target data distribution. Such embedding-based methods are prone to domain shift problems and are vulnerable to biases. We propose an integral projection-based semantic autoencoder (IP-SAE) where an encoder projects a visual feature space concatenated with the semantic space into a latent representation space. We force the decoder to reconstruct the visual-semantic data space. Due to this constraint, the visual-semantic projection function preserves the discriminatory data included inside the original visual feature space. The enriched projection forces a more precise reconstitution of the visual feature space invariant to the domain manifold. Consequently, the learned projection function is less domain-specific and alleviates the domain shift problem. Our proposed IP-SAE model consolidates a symmetric transformation function for embedding and projection, and thus, it provides transparency for interpreting generative applications in ZSL. Therefore, in addition to outperforming state-of-the-art methods considering four benchmark datasets, our analytical approach allows us to investigate distinct characteristics of generative-based methods in the unique context of zero-shot inference.
Functional principal component analysis (FPCA) is an important technique for dimension reduction in functional data analysis (FDA). Classical FPCA method is based on the Karhunen-Lo\`{e}ve expansion, which assumes a linear structure of the observed functional data. However, the assumption may not always be satisfied, and the FPCA method can become inefficient when the data deviates from the linear assumption. In this paper, we propose a novel FPCA method that is suitable for data with a nonlinear structure by neural network approach. We construct networks that can be applied to functional data and explore the corresponding universal approximation property. The main use of our proposed nonlinear FPCA method is curve reconstruction. We conduct a simulation study to evaluate the performance of our method. The proposed method is also applied to two real-world data sets to further demonstrate its superiority.
We present a model-agnostic algorithm for generating post-hoc explanations and uncertainty intervals for a machine learning model when only a static sample of inputs and outputs from the model is available, rather than direct access to the model itself. This situation may arise when model evaluations are expensive; when privacy, security and bandwidth constraints are imposed; or when there is a need for real-time, on-device explanations. Our algorithm uses a bootstrapping approach to quantify the uncertainty that inevitably arises when generating explanations from a finite sample of model queries. Through a simulation study, we show that the uncertainty intervals generated by our algorithm exhibit a favorable trade-off between interval width and coverage probability compared to the naive confidence intervals from classical regression analysis as well as current Bayesian approaches for quantifying explanation uncertainty. We further demonstrate the capabilities of our method by applying it to black-box models, including a deep neural network, trained on three real-world datasets.
We develop inferential tools for latent factor analysis in short panels. The pseudo maximum likelihood setting under a large cross-sectional dimension $n$ and a fixed time series dimension $T$ relies on a diagonal $T \times T$ covariance matrix of the errors without imposing sphericity or Gaussianity. We outline the asymptotic distributions of the latent factor and error covariance estimates as well as of an asymptotically uniformly most powerful invariant (AUMPI) test based on the likelihood ratio statistic for tests of the number of factors. We derive the AUMPI characterization from inequalities ensuring the monotone likelihood ratio property for positive definite quadratic forms in normal variables. An empirical application to a large panel of monthly U.S. stock returns separates date after date systematic and idiosyncratic risks in short subperiods of bear vs. bull market based on the selected number of factors. We observe an uptrend in idiosyncratic volatility while the systematic risk explains a large part of the cross-sectional total variance in bear markets but is not driven by a single factor. We also find that observed factors, scaled or not, struggle spanning latent factors. Rank tests reveal that observed factors struggle spanning latent factors with a discrepancy between the dimension of the two factor spaces decreasing over time.
Binary neural networks (BNNs) are an attractive solution for developing and deploying deep neural network (DNN)-based applications in resource constrained devices. Despite their success, BNNs still suffer from a fixed and limited compression factor that may be explained by the fact that existing pruning methods for full-precision DNNs cannot be directly applied to BNNs. In fact, weight pruning of BNNs leads to performance degradation, which suggests that the standard binarization domain of BNNs is not well adapted for the task. This work proposes a novel more general binary domain that extends the standard binary one that is more robust to pruning techniques, thus guaranteeing improved compression and avoiding severe performance losses. We demonstrate a closed-form solution for quantizing the weights of a full-precision network into the proposed binary domain. Finally, we show the flexibility of our method, which can be combined with other pruning strategies. Experiments over CIFAR-10 and CIFAR-100 demonstrate that the novel approach is able to generate efficient sparse networks with reduced memory usage and run-time latency, while maintaining performance.
The generalization mystery in deep learning is the following: Why do over-parameterized neural networks trained with gradient descent (GD) generalize well on real datasets even though they are capable of fitting random datasets of comparable size? Furthermore, from among all solutions that fit the training data, how does GD find one that generalizes well (when such a well-generalizing solution exists)? We argue that the answer to both questions lies in the interaction of the gradients of different examples during training. Intuitively, if the per-example gradients are well-aligned, that is, if they are coherent, then one may expect GD to be (algorithmically) stable, and hence generalize well. We formalize this argument with an easy to compute and interpretable metric for coherence, and show that the metric takes on very different values on real and random datasets for several common vision networks. The theory also explains a number of other phenomena in deep learning, such as why some examples are reliably learned earlier than others, why early stopping works, and why it is possible to learn from noisy labels. Moreover, since the theory provides a causal explanation of how GD finds a well-generalizing solution when one exists, it motivates a class of simple modifications to GD that attenuate memorization and improve generalization. Generalization in deep learning is an extremely broad phenomenon, and therefore, it requires an equally general explanation. We conclude with a survey of alternative lines of attack on this problem, and argue that the proposed approach is the most viable one on this basis.
Estimating human pose and shape from monocular images is a long-standing problem in computer vision. Since the release of statistical body models, 3D human mesh recovery has been drawing broader attention. With the same goal of obtaining well-aligned and physically plausible mesh results, two paradigms have been developed to overcome challenges in the 2D-to-3D lifting process: i) an optimization-based paradigm, where different data terms and regularization terms are exploited as optimization objectives; and ii) a regression-based paradigm, where deep learning techniques are embraced to solve the problem in an end-to-end fashion. Meanwhile, continuous efforts are devoted to improving the quality of 3D mesh labels for a wide range of datasets. Though remarkable progress has been achieved in the past decade, the task is still challenging due to flexible body motions, diverse appearances, complex environments, and insufficient in-the-wild annotations. To the best of our knowledge, this is the first survey to focus on the task of monocular 3D human mesh recovery. We start with the introduction of body models and then elaborate recovery frameworks and training objectives by providing in-depth analyses of their strengths and weaknesses. We also summarize datasets, evaluation metrics, and benchmark results. Open issues and future directions are discussed in the end, hoping to motivate researchers and facilitate their research in this area. A regularly updated project page can be found at //github.com/tinatiansjz/hmr-survey.
Deep neural networks have achieved remarkable success in computer vision tasks. Existing neural networks mainly operate in the spatial domain with fixed input sizes. For practical applications, images are usually large and have to be downsampled to the predetermined input size of neural networks. Even though the downsampling operations reduce computation and the required communication bandwidth, it removes both redundant and salient information obliviously, which results in accuracy degradation. Inspired by digital signal processing theories, we analyze the spectral bias from the frequency perspective and propose a learning-based frequency selection method to identify the trivial frequency components which can be removed without accuracy loss. The proposed method of learning in the frequency domain leverages identical structures of the well-known neural networks, such as ResNet-50, MobileNetV2, and Mask R-CNN, while accepting the frequency-domain information as the input. Experiment results show that learning in the frequency domain with static channel selection can achieve higher accuracy than the conventional spatial downsampling approach and meanwhile further reduce the input data size. Specifically for ImageNet classification with the same input size, the proposed method achieves 1.41% and 0.66% top-1 accuracy improvements on ResNet-50 and MobileNetV2, respectively. Even with half input size, the proposed method still improves the top-1 accuracy on ResNet-50 by 1%. In addition, we observe a 0.8% average precision improvement on Mask R-CNN for instance segmentation on the COCO dataset.
Most existing works in visual question answering (VQA) are dedicated to improving the accuracy of predicted answers, while disregarding the explanations. We argue that the explanation for an answer is of the same or even more importance compared with the answer itself, since it makes the question and answering process more understandable and traceable. To this end, we propose a new task of VQA-E (VQA with Explanation), where the computational models are required to generate an explanation with the predicted answer. We first construct a new dataset, and then frame the VQA-E problem in a multi-task learning architecture. Our VQA-E dataset is automatically derived from the VQA v2 dataset by intelligently exploiting the available captions. We have conducted a user study to validate the quality of explanations synthesized by our method. We quantitatively show that the additional supervision from explanations can not only produce insightful textual sentences to justify the answers, but also improve the performance of answer prediction. Our model outperforms the state-of-the-art methods by a clear margin on the VQA v2 dataset.
While it is nearly effortless for humans to quickly assess the perceptual similarity between two images, the underlying processes are thought to be quite complex. Despite this, the most widely used perceptual metrics today, such as PSNR and SSIM, are simple, shallow functions, and fail to account for many nuances of human perception. Recently, the deep learning community has found that features of the VGG network trained on the ImageNet classification task has been remarkably useful as a training loss for image synthesis. But how perceptual are these so-called "perceptual losses"? What elements are critical for their success? To answer these questions, we introduce a new Full Reference Image Quality Assessment (FR-IQA) dataset of perceptual human judgments, orders of magnitude larger than previous datasets. We systematically evaluate deep features across different architectures and tasks and compare them with classic metrics. We find that deep features outperform all previous metrics by huge margins. More surprisingly, this result is not restricted to ImageNet-trained VGG features, but holds across different deep architectures and levels of supervision (supervised, self-supervised, or even unsupervised). Our results suggest that perceptual similarity is an emergent property shared across deep visual representations.