亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

In this paper, we present a neural network-based approach for tracking and reconstructing the trajectories of baseball pitches from 2D video footage to 3D coordinates. We utilize OpenCV's CSRT algorithm to accurately track the baseball and fixed reference points in 2D video frames. These tracked pixel coordinates are then used as input features for our neural network model, which comprises multiple fully connected layers to map the 2D coordinates to 3D space. The model is trained on a dataset of labeled trajectories using a mean squared error loss function and the Adam optimizer, optimizing the network to minimize prediction errors. Our experimental results demonstrate that this approach achieves high accuracy in reconstructing 3D trajectories from 2D inputs. This method shows great potential for applications in sports analysis, coaching, and enhancing the accuracy of trajectory predictions in various sports.

相關內容

 3D是英文“Three Dimensions”的簡稱,中文是指三維、三個維度、三個坐標,即有長、有寬、有高,換句話說,就是立體的,是相對于只有長和寬的平面(2D)而言。

In this article, we focus on the critical tasks of plant protection in arable farms, addressing a modern challenge in agriculture: integrating ecological considerations into the operational strategy of precision weeding robots like \bbot. This article presents the recent advancements in weed management algorithms and the real-world performance of \bbot\ at the University of Bonn's Klein-Altendorf campus. We present a novel Rolling-view observation model for the BonnBot-Is weed monitoring section which leads to an average absolute weeding performance enhancement of $3.4\%$. Furthermore, for the first time, we show how precision weeding robots could consider bio-diversity-aware concerns in challenging weeding scenarios. We carried out comprehensive weeding experiments in sugar-beet fields, covering both weed-only and mixed crop-weed situations, and introduced a new dataset compatible with precision weeding. Our real-field experiments revealed that our weeding approach is capable of handling diverse weed distributions, with a minimal loss of only $11.66\%$ attributable to intervention planning and $14.7\%$ to vision system limitations highlighting required improvements of the vision system.

In this paper, we derive distributional convergence rates for the magnetization vector and the maximum pseudolikelihood estimator of the inverse temperature parameter in the tensor Curie-Weiss Potts model. Limit theorems for the magnetization vector have been derived recently in Bhowal and Mukherjee (2023), where several phase transition phenomena in terms of the scaling of the (centered) magnetization and its asymptotic distribution were established, depending upon the position of the true parameters in the parameter space. In the current work, we establish Berry-Esseen type results for the magnetization vector, specifying its rate of convergence at these different phases. At most points in the parameter space, this rate is $N^{-1/2}$ ($N$ being the size of the Curie-Weiss network), while at some "special" points, the rate is either $N^{-1/4}$ or $N^{-1/6}$, depending upon the behavior of the fourth derivative of a certain "negative free energy function" at these special points. These results are then used to derive Berry-Esseen type bounds for the maximum pseudolikelihood estimator of the inverse temperature parameter whenever it lies above a certain criticality threshold.

In this paper, we study second-order algorithms for the convex-concave minimax problem, which has attracted much attention in many fields such as machine learning in recent years. We propose a Lipschitz-free cubic regularization (LF-CR) algorithm for solving the convex-concave minimax optimization problem without knowing the Lipschitz constant. It can be shown that the iteration complexity of the LF-CR algorithm to obtain an $\epsilon$-optimal solution with respect to the restricted primal-dual gap is upper bounded by $\mathcal{O}(\frac{\rho\|z^0-z^*\|^3}{\epsilon})^{\frac{2}{3}}$, where $z^0=(x^0,y^0)$ is a pair of initial points, $z^*=(x^*,y^*)$ is a pair of optimal solutions, and $\rho$ is the Lipschitz constant. We further propose a fully parameter-free cubic regularization (FF-CR) algorithm that does not require any parameters of the problem, including the Lipschitz constant and the upper bound of the distance from the initial point to the optimal solution. We also prove that the iteration complexity of the FF-CR algorithm to obtain an $\epsilon$-optimal solution with respect to the gradient norm is upper bounded by $\mathcal{O}(\frac{\rho\|z^0-z^*\|^2}{\epsilon})^{\frac{2}{3}}$. Numerical experiments show the efficiency of both algorithms. To the best of our knowledge, the proposed FF-CR algorithm is the first completely parameter-free second-order algorithm for solving convex-concave minimax optimization problems, and its iteration complexity is consistent with the optimal iteration complexity lower bound of existing second-order algorithms with parameters for solving convex-concave minimax problems.

In this paper, we study a multi-input multi-output (MIMO) beamforming design in an integrated sensing and communication (ISAC) system, in which an ISAC base station (BS) is used to communicate with multiple downlink users and simultaneously the communication signals are reused for sensing multiple targets. Our interested sensing parameters are the angle and delay information of the targets, which can be used to locate these targets. Under this consideration, we first derive the Cram\'{e}r-Rao bound (CRB) for joint angle and delay estimation. Then, we optimize the transmit beamforming at the BS to minimize the CRB, subject to the communication rate requirement and the maximum transmit power constraint. In particular, we obtain the closed-form optimal solution in the case of single-target and single-user, and in the case of multi-target and multi-user scenario, the sparsity of the optimal solution is proven, leading to a reduction in computational complexity during optimization. The numerical results demonstrate that the optimized beamforming yields excellent positioning performance and effectively reduces the requirement for a large number of antennas at the BS.

In this paper, we propose a two-phase training approach where pre-trained large language models are continually pre-trained on parallel data and then supervised fine-tuned with a small amount of high-quality parallel data. To investigate the effectiveness of our proposed approach, we conducted continual pre-training with a 3.8B-parameter model and parallel data across eight different formats. We evaluate these methods on thirteen test sets for Japanese-to-English and English-to-Japanese translation. The results demonstrate that when utilizing parallel data in continual pre-training, it is essential to alternate between source and target sentences. Additionally, we demonstrated that the translation accuracy improves only for translation directions where the order of source and target sentences aligns between continual pre-training data and inference. In addition, we demonstrate that the LLM-based translation model is more robust in translating spoken language and achieves higher accuracy with less training data compared to supervised encoder-decoder models. We also show that the highest accuracy is achieved when the data for continual pre-training consists of interleaved source and target sentences and when tags are added to the source sentences.

In this paper, we present an information-theoretic method for clustering mixed-type data, that is, data consisting of both continuous and categorical variables. The method is a variant of the Deterministic Information Bottleneck algorithm which optimally compresses the data while retaining relevant information about the underlying structure. We compare the performance of the proposed method to that of three well-established clustering methods (KAMILA, K-Prototypes, and Partitioning Around Medoids with Gower's dissimilarity) on simulated and real-world datasets. The results demonstrate that the proposed approach represents a competitive alternative to conventional clustering techniques under specific conditions.

In this paper, we examine a multi-sensor system where each sensor may monitor more than one time-varying information process and send status updates to a remote monitor over a common channel. We consider that each sensor's status update may contain information about more than one information process in the system subject to the system's constraints. To investigate the impact of this correlation on the overall system's performance, we conduct an analysis of both the average Age of Information (AoI) and source state estimation error at the monitor. Building upon this analysis, we subsequently explore the impact of the packet arrivals, correlation probabilities, and rate of processes' state change on the system's performance. Next, we consider the case where sensors have limited sensing abilities and distribute a portion of their sensing abilities across the different processes. We optimize this distribution to minimize the total AoI of the system. Interestingly, we show that monitoring multiple processes from a single source may not always be beneficial. Our results also reveal that the optimal sensing distribution for diverse arrival rates may exhibit a rapid regime switch, rather than smooth transitions, after crossing critical system values. This highlights the importance of identifying these critical thresholds to ensure effective system performance.

To address this issue, we formulate translated non-English, geographic, and socioeconomic integrated prompts and evaluate their impact on VL model performance for data from different countries and income groups. Our findings show that geographic and socioeconomic integrated prompts improve VL performance on lower-income data and favor the retrieval of topic appearances commonly found in data from low-income households. From our analyses, we identify and highlight contexts where these strategies yield the most improvements. Our model analysis code is publicly available at //github.com/Anniejoan/Uplifting-Lower-income-data .

Non-IID data present a tough challenge for federated learning. In this paper, we explore a novel idea of facilitating pairwise collaborations between clients with similar data. We propose FedAMP, a new method employing federated attentive message passing to facilitate similar clients to collaborate more. We establish the convergence of FedAMP for both convex and non-convex models, and propose a heuristic method to further improve the performance of FedAMP when clients adopt deep neural networks as personalized models. Our extensive experiments on benchmark data sets demonstrate the superior performance of the proposed methods.

In this paper, we propose the joint learning attention and recurrent neural network (RNN) models for multi-label classification. While approaches based on the use of either model exist (e.g., for the task of image captioning), training such existing network architectures typically require pre-defined label sequences. For multi-label classification, it would be desirable to have a robust inference process, so that the prediction error would not propagate and thus affect the performance. Our proposed model uniquely integrates attention and Long Short Term Memory (LSTM) models, which not only addresses the above problem but also allows one to identify visual objects of interests with varying sizes without the prior knowledge of particular label ordering. More importantly, label co-occurrence information can be jointly exploited by our LSTM model. Finally, by advancing the technique of beam search, prediction of multiple labels can be efficiently achieved by our proposed network model.

北京阿比特科技有限公司