Simultaneous confidence bands (SCBs) for percentiles in linear regression are valuable tools with many applications. In this paper, we propose a novel criterion for comparing SCBs for percentiles, termed the Minimum Area Confidence Set (MACS) criterion. This criterion utilizes the area of the confidence set for the pivotal quantities, which are generated from the confidence set of the unknown parameters. Subsequently, we employ the MACS criterion to construct exact SCBs over any finite covariate intervals and to compare multiple SCBs of different forms. This approach can be used to determine the optimal SCBs. It is discovered that the area of the confidence set for the pivotal quantities of an asymmetric SCB is uniformly and can be very substantially smaller than that of the corresponding symmetric SCB. Therefore, under the MACS criterion, exact asymmetric SCBs should always be preferred. Furthermore, a new computationally efficient method is proposed to calculate the critical constants of exact SCBs for percentiles. A real data example on drug stability study is provided for illustration.
As the current detection solutions of distributed denial of service attacks (DDoS) need additional infrastructures to handle high aggregate data rates, they are not suitable for sensor networks or the Internet of Things. Besides, the security architecture of software-defined sensor networks needs to pay attention to the vulnerabilities of both software-defined networks and sensor networks. In this paper, we propose a network-aware automated machine learning (AutoML) framework which detects DDoS attacks in software-defined sensor networks. Our framework selects an ideal machine learning algorithm to detect DDoS attacks in network-constrained environments, using metrics such as variable traffic load, heterogeneous traffic rate, and detection time while preventing over-fitting. Our contributions are two-fold: (i) we first investigate the trade-off between the efficiency of ML algorithms and network/traffic state in the scope of DDoS detection. (ii) we design and implement a software architecture containing open-source network tools, with the deployment of multiple ML algorithms. Lastly, we show that under the denial of service attacks, our framework ensures the traffic packets are still delivered within the network with additional delays.
Noisy marginals are a common form of confidentiality-protecting data release and are useful for many downstream tasks such as contingency table analysis, construction of Bayesian networks, and even synthetic data generation. Privacy mechanisms that provide unbiased noisy answers to linear queries (such as marginals) are known as matrix mechanisms. We propose ResidualPlanner, a matrix mechanism for marginals with Gaussian noise that is both optimal and scalable. ResidualPlanner can optimize for many loss functions that can be written as a convex function of marginal variances (prior work was restricted to just one predefined objective function). ResidualPlanner can optimize the accuracy of marginals in large scale settings in seconds, even when the previous state of the art (HDMM) runs out of memory. It even runs on datasets with 100 attributes in a couple of minutes. Furthermore ResidualPlanner can efficiently compute variance/covariance values for each marginal (prior methods quickly run out of memory, even for relatively small datasets).
Ambiguous questions persist in open-domain question answering, because formulating a precise question with a unique answer is often challenging. Previously, Min et al. (2020) have tackled this issue by generating disambiguated questions for all possible interpretations of the ambiguous question. This can be effective, but not ideal for providing an answer to the user. Instead, we propose to ask a clarification question, where the user's response will help identify the interpretation that best aligns with the user's intention. We first present CAMBIGNQ, a dataset consisting of 5,654 ambiguous questions, each with relevant passages, possible answers, and a clarification question. The clarification questions were efficiently created by generating them using InstructGPT and manually revising them as necessary. We then define a pipeline of tasks and design appropriate evaluation metrics. Lastly, we achieve 61.3 F1 on ambiguity detection and 40.5 F1 on clarification-based QA, providing strong baselines for future work.
This paper develops a novel minimal-state operational semantics for higher-order functional languages which uses only the call stack and two source program points as the complete state information: there is no environment, no substitution, no continuation, etc. We prove this form of operational semantics is equivalent to standard presentations. We then show how this approach can open the door to potential new applications: we define a program analysis as a direct finitization of this operational semantics. The program analysis that naturally emerges has a number of novel and interesting properties compared to standard program analyses for higher-order programs: for example, it can infer recurrences, and does not need value widening. We both give a formal definition of the analysis and describe our current implementation.
Language Models (LMs) often must integrate facts they memorized in pretraining with new information that appears in a given context. These two sources can disagree, causing competition within the model, and it is unclear how an LM will resolve the conflict. On a dataset that queries for knowledge of world capitals, we investigate both distributional and mechanistic determinants of LM behavior in such situations. Specifically, we measure the proportion of the time an LM will use a counterfactual prefix (e.g., "The capital of Poland is London") to overwrite what it learned in pretraining ("Warsaw"). On Pythia and GPT2, the training frequency of both the query country ("Poland") and the in-context city ("London") highly affect the models' likelihood of using the counterfactual. We then use head attribution to identify individual attention heads that either promote the memorized answer or the in-context answer in the logits. By scaling up or down the value vector of these heads, we can control the likelihood of using the in-context answer on new data. This method can increase the rate of generating the in-context answer to 88\% of the time simply by scaling a single head at runtime. Our work contributes to a body of evidence showing that we can often localize model behaviors to specific components and provides a proof of concept for how future methods might control model behavior dynamically at runtime.
Shape optimization with respect to eigenvalues of a cavity plays an important role in the design of new resonators or in the optimization of existing ones. In our paper, we propose a gradient-based optimization scheme, which we enhance with closed-form shape derivatives of the system matrices. Based on these, we can compute accurate derivatives of eigenvalues, eigenmodes and the cost function with respect to the geometry, which significantly reduces the computational effort of the optimizer. We demonstrate our work by applying it to the 9-cell TESLA cavity, for which we tune the design parameters of the computational model to match the design criteria for devices in realistic use cases. Since eigenvalues may cross during the shape optimization of a cavity, we propose a new algorithm based on an eigenvalue matching procedure, to ensure the optimization of the desired mode in order to also enable successful matching along large shape variations.
Math Word Problems (MWP) aims to automatically solve mathematical questions given in texts. Previous studies tend to design complex models to capture additional information in the original text so as to enable the model to gain more comprehensive features. In this paper, we turn our attention in the opposite direction, and work on how to discard redundant features containing spurious correlations for MWP. To this end, we design an Expression Syntax Information Bottleneck method for MWP (called ESIB) based on variational information bottleneck, which extracts essential features of expression syntax tree while filtering latent-specific redundancy containing syntax-irrelevant features. The key idea of ESIB is to encourage multiple models to predict the same expression syntax tree for different problem representations of the same problem by mutual learning so as to capture consistent information of expression syntax tree and discard latent-specific redundancy. To improve the generalization ability of the model and generate more diverse expressions, we design a self-distillation loss to encourage the model to rely more on the expression syntax information in the latent space. Experimental results on two large-scale benchmarks show that our model not only achieves state-of-the-art results but also generates more diverse solutions. The code is available.
Device-directed speech detection (DDSD) is the binary classification task of distinguishing between queries directed at a voice assistant versus side conversation or background speech. State-of-the-art DDSD systems use verbal cues, e.g acoustic, text and/or automatic speech recognition system (ASR) features, to classify speech as device-directed or otherwise, and often have to contend with one or more of these modalities being unavailable when deployed in real-world settings. In this paper, we investigate fusion schemes for DDSD systems that can be made more robust to missing modalities. Concurrently, we study the use of non-verbal cues, specifically prosody features, in addition to verbal cues for DDSD. We present different approaches to combine scores and embeddings from prosody with the corresponding verbal cues, finding that prosody improves DDSD performance by upto 8.5% in terms of false acceptance rate (FA) at a given fixed operating point via non-linear intermediate fusion, while our use of modality dropout techniques improves the performance of these models by 7.4% in terms of FA when evaluated with missing modalities during inference time.
Recently, graph neural networks (GNNs) have been widely used for document classification. However, most existing methods are based on static word co-occurrence graphs without sentence-level information, which poses three challenges:(1) word ambiguity, (2) word synonymity, and (3) dynamic contextual dependency. To address these challenges, we propose a novel GNN-based sparse structure learning model for inductive document classification. Specifically, a document-level graph is initially generated by a disjoint union of sentence-level word co-occurrence graphs. Our model collects a set of trainable edges connecting disjoint words between sentences and employs structure learning to sparsely select edges with dynamic contextual dependencies. Graphs with sparse structures can jointly exploit local and global contextual information in documents through GNNs. For inductive learning, the refined document graph is further fed into a general readout function for graph-level classification and optimization in an end-to-end manner. Extensive experiments on several real-world datasets demonstrate that the proposed model outperforms most state-of-the-art results, and reveal the necessity to learn sparse structures for each document.
Translational distance-based knowledge graph embedding has shown progressive improvements on the link prediction task, from TransE to the latest state-of-the-art RotatE. However, N-1, 1-N and N-N predictions still remain challenging. In this work, we propose a novel translational distance-based approach for knowledge graph link prediction. The proposed method includes two-folds, first we extend the RotatE from 2D complex domain to high dimension space with orthogonal transforms to model relations for better modeling capacity. Second, the graph context is explicitly modeled via two directed context representations. These context representations are used as part of the distance scoring function to measure the plausibility of the triples during training and inference. The proposed approach effectively improves prediction accuracy on the difficult N-1, 1-N and N-N cases for knowledge graph link prediction task. The experimental results show that it achieves better performance on two benchmark data sets compared to the baseline RotatE, especially on data set (FB15k-237) with many high in-degree connection nodes.