The Hyperspectral Unxming problem is to find the pure spectral signal of the underlying materials (endmembers) and their proportions (abundances). The proposed method builds upon the recently proposed method, Latent Dirichlet Variational Autoencoder (LDVAE). It assumes that abundances can be encoded as Dirichlet Distributions while mixed pixels and endmembers are represented by Multivariate Normal Distributions. However, LDVAE does not leverage spatial information present in an HSI; we propose an Isotropic CNN encoder with spatial attention to solve the hyperspectral unmixing problem. We evaluated our model on Samson, Hydice Urban, Cuprite, and OnTech-HSI-Syn-21 datasets. Our model also leverages the transfer learning paradigm for Cuprite Dataset, where we train the model on synthetic data and evaluate it on real-world data. We are able to observe the improvement in the results for the endmember extraction and abundance estimation by incorporating the spatial information. Code can be found at //github.com/faisalqureshi/cnn-ldvae
Feature extraction and matching are the basic parts of many robotic vision tasks, such as 2D or 3D object detection, recognition, and registration. As is known, 2D feature extraction and matching have already achieved great success. Unfortunately, in the field of 3D, the current methods may fail to support the extensive application of 3D LiDAR sensors in robotic vision tasks due to their poor descriptiveness and inefficiency. To address this limitation, we propose a novel 3D feature representation method: Linear Keypoints representation for 3D LiDAR point cloud, called LinK3D. The novelty of LinK3D lies in that it fully considers the characteristics (such as the sparsity and complexity) of LiDAR point clouds and represents the keypoint with its robust neighbor keypoints, which provide strong constraints in the description of the keypoint. The proposed LinK3D has been evaluated on three public datasets, and the experimental results show that our method achieves great matching performance. More importantly, LinK3D also shows excellent real-time performance, faster than the sensor frame rate at 10 Hz of a typical rotating LiDAR sensor. LinK3D only takes an average of 30 milliseconds to extract features from the point cloud collected by a 64-beam LiDAR and takes merely about 20 milliseconds to match two LiDAR scans when executed on a computer with an Intel Core i7 processor. Moreover, our method can be extended to LiDAR odometry task, and shows good scalability. We release the implementation of our method at //github.com/YungeCui/LinK3D.
The evaluation of Natural Language Generation (NLG) models has gained increased attention, urging the development of metrics that evaluate various aspects of generated text. LUNA addresses this challenge by introducing a unified interface for 20 NLG evaluation metrics. These metrics are categorized based on their reference-dependence and the type of text representation they employ, from string-based n-gram overlap to the utilization of static embeddings and pre-trained language models. The straightforward design of LUNA allows for easy extension with novel metrics, requiring just a few lines of code. LUNA offers a user-friendly tool for evaluating generated texts.
Causal effect estimation from observational data is a central problem in causal inference. Methods based on potential outcomes framework solve this problem by exploiting inductive biases and heuristics from causal inference. Each of these methods addresses a specific aspect of causal effect estimation, such as controlling propensity score, enforcing randomization, etc., by designing neural network (NN) architectures and regularizers. In this paper, we propose an adaptive method called Neurosymbolic Causal Effect Estimator (NESTER), a generalized method for causal effect estimation. NESTER integrates the ideas used in existing methods based on multi-head NNs for causal effect estimation into one framework. We design a Domain Specific Language (DSL) tailored for causal effect estimation based on causal inductive biases used in literature. We conduct a theoretical analysis to investigate NESTER's efficacy in estimating causal effects. Our comprehensive empirical results show that NESTER performs better than state-of-the-art methods on benchmark datasets.
Owing to the promising ability of saving hardware cost and spectrum resources, integrated sensing and communication (ISAC) is regarded as a revolutionary technology for future sixth-generation (6G) networks. The mono-static ISAC systems considered in most of existing works can only achieve limited sensing performance due to the single observation angle and easily blocked transmission links, which motivates researchers to investigate cooperative ISAC networks. In order to further improve the degrees of freedom (DoFs) of cooperative ISAC networks, the transmitter-receiver selection, i.e., base station (BS) mode selection problem, is meaningful to be studied. However, to our best knowledge, this crucial problem has not been extensively studied in existing works. In this paper, we consider the joint BS mode selection, transmit beamforming, and receive filter designs for cooperative cell-free ISAC networks, where multi-BSs cooperatively serve communication users and detect targets. An efficient joint beamforming design algorithm and three different heuristic BS mode selection methods are proposed to solve the non-convex NP-hard problem. Simulation results demonstrates the advantages of cooperative ISAC networks, the importance of BS mode selection, and the effectiveness of proposed algorithms.
Neuron labeling is an approach to visualize the behaviour and respond of a certain neuron to a certain pattern that activates the neuron. Neuron labeling extract information about the features captured by certain neurons in a deep neural network, one of which uses the encoder-decoder image captioning approach. The encoder used can be a pretrained CNN-based model and the decoder is an RNN-based model for text generation. Previous work, namely MILAN (Mutual Information-guided Linguistic Annotation of Neuron), has tried to visualize the neuron behaviour using modified Show, Attend, and Tell (SAT) model in the encoder, and LSTM added with Bahdanau attention in the decoder. MILAN can show great result on short sequence neuron captioning, but it does not show great result on long sequence neuron captioning, so in this work, we would like to improve the performance of MILAN even more by utilizing different kind of attention mechanism and additionally adding several attention result into one, in order to combine all the advantages from several attention mechanism. Using our compound dataset, we obtained higher BLEU and F1-Score on our proposed model, achieving 17.742 and 0.4811 respectively. At some point where the model converges at the peak, our model obtained BLEU of 21.2262 and BERTScore F1-Score of 0.4870.
Video moment retrieval (MR) and highlight detection (HD) based on natural language queries are two highly related tasks, which aim to obtain relevant moments within videos and highlight scores of each video clip. Recently, several methods have been devoted to building DETR-based networks to solve both MR and HD jointly. These methods simply add two separate task heads after multi-modal feature extraction and feature interaction, achieving good performance. Nevertheless, these approaches underutilize the reciprocal relationship between two tasks. In this paper, we propose a task-reciprocal transformer based on DETR (TR-DETR) that focuses on exploring the inherent reciprocity between MR and HD. Specifically, a local-global multi-modal alignment module is first built to align features from diverse modalities into a shared latent space. Subsequently, a visual feature refinement is designed to eliminate query-irrelevant information from visual features for modal interaction. Finally, a task cooperation module is constructed to refine the retrieval pipeline and the highlight score prediction process by utilizing the reciprocity between MR and HD. Comprehensive experiments on QVHighlights, Charades-STA and TVSum datasets demonstrate that TR-DETR outperforms existing state-of-the-art methods. Codes are available at \url{//github.com/mingyao1120/TR-DETR}.
Radio frequency (RF) signal mapping, which is the process of analyzing and predicting the RF signal strength and distribution across specific areas, is crucial for cellular network planning and deployment. Traditional approaches to RF signal mapping rely on statistical models constructed based on measurement data, which offer low complexity but often lack accuracy, or ray tracing tools, which provide enhanced precision for the target area but suffer from increased computational complexity. Recently, machine learning (ML) has emerged as a data-driven method for modeling RF signal propagation, which leverages models trained on synthetic datasets to perform RF signal mapping in "unseen" areas. In this paper, we present Geo2SigMap, an ML-based framework for efficient and high-fidelity RF signal mapping using geographic databases. First, we develop an automated framework that seamlessly integrates three open-source tools: OpenStreetMap (geographic databases), Blender (computer graphics), and Sionna (ray tracing), enabling the efficient generation of large-scale 3D building maps and ray tracing models. Second, we propose a cascaded U-Net model, which is pre-trained on synthetic datasets and employed to generate detailed RF signal maps, leveraging environmental information and sparse measurement data. Finally, we evaluate the performance of Geo2SigMap via a real-world measurement campaign, where three types of user equipment (UE) collect over 45,000 data points related to cellular information from six LTE cells operating in the citizens broadband radio service (CBRS) band. Our results show that Geo2SigMap achieves an average root-mean-square-error (RMSE) of 6.04 dB for predicting the reference signal received power (RSRP) at the UE, representing an average RMSE improvement of 3.59 dB compared to existing methods.
Generative commonsense reasoning which aims to empower machines to generate sentences with the capacity of reasoning over a set of concepts is a critical bottleneck for text generation. Even the state-of-the-art pre-trained language generation models struggle at this task and often produce implausible and anomalous sentences. One reason is that they rarely consider incorporating the knowledge graph which can provide rich relational information among the commonsense concepts. To promote the ability of commonsense reasoning for text generation, we propose a novel knowledge graph augmented pre-trained language generation model KG-BART, which encompasses the complex relations of concepts through the knowledge graph and produces more logical and natural sentences as output. Moreover, KG-BART can leverage the graph attention to aggregate the rich concept semantics that enhances the model generalization on unseen concept sets. Experiments on benchmark CommonGen dataset verify the effectiveness of our proposed approach by comparing with several strong pre-trained language generation models, particularly KG-BART outperforms BART by 5.80, 4.60, in terms of BLEU-3, 4. Moreover, we also show that the generated context by our model can work as background scenarios to benefit downstream commonsense QA tasks.
The problem of Multiple Object Tracking (MOT) consists in following the trajectory of different objects in a sequence, usually a video. In recent years, with the rise of Deep Learning, the algorithms that provide a solution to this problem have benefited from the representational power of deep models. This paper provides a comprehensive survey on works that employ Deep Learning models to solve the task of MOT on single-camera videos. Four main steps in MOT algorithms are identified, and an in-depth review of how Deep Learning was employed in each one of these stages is presented. A complete experimental comparison of the presented works on the three MOTChallenge datasets is also provided, identifying a number of similarities among the top-performing methods and presenting some possible future research directions.
Distant supervision can effectively label data for relation extraction, but suffers from the noise labeling problem. Recent works mainly perform soft bag-level noise reduction strategies to find the relatively better samples in a sentence bag, which is suboptimal compared with making a hard decision of false positive samples in sentence level. In this paper, we introduce an adversarial learning framework, which we named DSGAN, to learn a sentence-level true-positive generator. Inspired by Generative Adversarial Networks, we regard the positive samples generated by the generator as the negative samples to train the discriminator. The optimal generator is obtained until the discrimination ability of the discriminator has the greatest decline. We adopt the generator to filter distant supervision training dataset and redistribute the false positive instances into the negative set, in which way to provide a cleaned dataset for relation classification. The experimental results show that the proposed strategy significantly improves the performance of distant supervision relation extraction comparing to state-of-the-art systems.