We prove that a formula predicted on the basis of non-rigorous physics arguments [Zdeborova and Krzakala: Phys. Rev. E (2007)] provides a lower bound on the chromatic number of sparse random graphs. The proof is based on the interpolation method from mathematical physics. In the case of random regular graphs the lower bound can be expressed algebraically, while in the case of the binomial random we obtain a variational formula. As an application we calculate improved explicit lower bounds on the chromatic number of random graphs for small (average) degrees. Additionally, show how asymptotic formulas for large degrees that were previously obtained by lengthy and complicated combinatorial arguments can be re-derived easily from these new results.
We study a class of deterministic flows in ${\mathbb R}^{d\times k}$, parametrized by a random matrix ${\boldsymbol X}\in {\mathbb R}^{n\times d}$ with i.i.d. centered subgaussian entries. We characterize the asymptotic behavior of these flows over bounded time horizons, in the high-dimensional limit in which $n,d\to\infty$ with $k$ fixed and converging aspect ratios $n/d\to\delta$. The asymptotic characterization we prove is in terms of a system of a nonlinear stochastic process in $k$ dimensions, whose parameters are determined by a fixed point condition. This type of characterization is known in physics as dynamical mean field theory. Rigorous results of this type have been obtained in the past for a few spin glass models. Our proof is based on time discretization and a reduction to certain iterative schemes known as approximate message passing (AMP) algorithms, as opposed to earlier work that was based on large deviations theory and stochastic processes theory. The new approach allows for a more elementary proof and implies that the high-dimensional behavior of the flow is universal with respect to the distribution of the entries of ${\boldsymbol X}$. As specific applications, we obtain high-dimensional characterizations of gradient flow in some classical models from statistics and machine learning, under a random design assumption.
This work provides a theoretical framework for the pose estimation problem using total least squares for vector observations from landmark features. First, the optimization framework is formulated with observation vectors extracted from point cloud features. Then, error-covariance expressions are derived. The attitude and position solutions obtained via the derived optimization framework are proven to reach the bounds defined by the Cram\'er-Rao lower bound under the small-angle approximation of attitude errors. The measurement data for the simulation of this problem is provided through a series of vector observation scans, and a fully populated observation noise-covariance matrix is assumed as the weight in the cost function to cover the most general case of the sensor uncertainty. Here, previous derivations are expanded for the pose estimation problem to include more generic correlations in the errors than previous cases involving an isotropic noise assumption. The proposed solution is simulated in a Monte-Carlo framework to validate the error-covariance analysis.
Calculating the expected information gain in optimal Bayesian experimental design typically relies on nested Monte Carlo sampling. When the model also contains nuisance parameters, this introduces a second inner loop. We propose and derive a small-noise approximation for this additional inner loop. The computational cost of our method can be further reduced by applying a Laplace approximation to the remaining inner loop. Thus, we present two methods, the small-noise Double-loop Monte Carlo and small-noise Monte Carlo Laplace methods. Moreover, we demonstrate that the total complexity of these two approaches remains comparable to the case without nuisance uncertainty. To assess the efficiency of these methods, we present three examples, and the last example includes the partial differential equation for the electrical impedance tomography experiment for composite laminate materials.
In this paper we obtain further improvement of index bounds for character sums of polynomials over finite fields. We present some examples, which show that our new bound is an improved bound compared to both the Weil bound and the index bound given by Wan and Wang. As an application, we count the number of all the solutions of some algebraic curves by using our result.
In this paper, we present a constructive and proof-relevant development of graph theory, including the notion of maps, their faces, and maps of graphs embedded in the sphere, in homotopy type theory. This allows us to provide an elementary characterisation of planarity for locally directed finite and connected multigraphs that takes inspiration from topological graph theory, particularly from combinatorial embeddings of graphs into surfaces. A graph is planar if it has a map and an outer face with which any walk in the embedded graph is walk-homotopic to another. A result is that this type of planar maps forms a homotopy set for a graph. As a way to construct examples of planar graphs inductively, extensions of planar maps are introduced. We formalise the essential parts of this work in the proof-assistant Agda with support for homotopy type theory.
We consider single-conflict colorings, a variant of graph colorings in which each edge of a graph has a single forbidden color pair. We show that for any assignment of forbidden color pairs to the edges of a $d$-degenerate graph $G$ on $n$ vertices of edge-multiplicity at most $\log \log n$, $O(\sqrt{ d } \log n)$ colors are always enough to color the vertices of $G$ in a way that avoids every forbidden color pair. This answers a question of Dvo\v{r}\'ak, Esperet, Kang, and Ozeki for simple graphs (Journal of Graph Theory 2021).
We prove that every simple 2-connected subcubic graph on $n$ vertices with $n_2$ vertices of degree 2 has a TSP walk of length at most $\frac{5n+n_2}{4}-1$, confirming a conjecture of Dvo\v{r}\'ak, Kr\'al', and Mohar. This bound is best possible; there are infinitely many subcubic and cubic graphs whose minimum TSP walks have lengths $\frac{5n+n_2}{4}-1$ and $\frac{5n}{4} - 2$ respectively. We characterize the extremal subcubic examples meeting this bound. We also give a quadratic-time combinatorial algorithm for finding such a TSP walk. In particular, we obtain a $\frac{5}{4}$-approximation algorithm for the graphic TSP on simple cubic graphs, improving on the previously best known approximation ratio of $\frac{9}{7}$.
We consider a problem introduced by Feige, Gamarnik, Neeman, R\'acz and Tetali [2020], that of finding a large clique in a random graph $G\sim G(n,\frac{1}{2})$, where the graph $G$ is accessible by queries to entries of its adjacency matrix. The query model allows some limited adaptivity, with a constant number of rounds of queries, and $n^\delta$ queries in each round. With high probability, the maximum clique in $G$ is of size roughly $2\log n$, and the goal is to find cliques of size $\alpha\log n$, for $\alpha$ as large as possible. We prove that no two-rounds algorithm is likely to find a clique larger than $\frac{4}{3}\delta\log n$, which is a tight upper bound when $1\leq\delta\leq \frac{6}{5}$. For other ranges of parameters, namely, two-rounds with $\frac{6}{5}<\delta<2$, and three-rounds with $1\leq\delta<2$, we improve over the previously known upper bounds on $\alpha$, but our upper bounds are not tight. If early rounds are restricted to have fewer queries than the last round, then for some such restrictions we do prove tight upper bounds.
There are distributed graph algorithms for finding maximal matchings and maximal independent sets in $O(\Delta + \log^* n)$ communication rounds; here $n$ is the number of nodes and $\Delta$ is the maximum degree. The lower bound by Linial (1987, 1992) shows that the dependency on $n$ is optimal: these problems cannot be solved in $o(\log^* n)$ rounds even if $\Delta = 2$. However, the dependency on $\Delta$ is a long-standing open question, and there is currently an exponential gap between the upper and lower bounds. We prove that the upper bounds are tight. We show that any algorithm that finds a maximal matching or maximal independent set with probability at least $1-1/n$ requires $\Omega(\min\{\Delta,\log \log n / \log \log \log n\})$ rounds in the LOCAL model of distributed computing. As a corollary, it follows that any deterministic algorithm that finds a maximal matching or maximal independent set requires $\Omega(\min\{\Delta, \log n / \log \log n\})$ rounds; this is an improvement over prior lower bounds also as a function of $n$.
We study fractional variants of the quasi-norms introduced by Brezis, Van Schaftingen, and Yung in the study of the Sobolev space $\dot W^{1,p}$. The resulting spaces are identified as a special class of real interpolation spaces of Sobolev-Slobodecki\u{\i} spaces. We establish the equivalence between Fourier analytic definitions and definitions via difference operators acting on measurable functions. We prove various new results on embeddings and non-embeddings, and give applications to harmonic and caloric extensions. For suitable wavelet bases we obtain a characterization of the approximation spaces for best $n$-term approximation from a wavelet basis via smoothness conditions on the function; this extends a classical result by DeVore, Jawerth and Popov.